Share
VIDEOS 1 TO 50
ATPL Training / Airframes & Systems #1 Structures - Loads Applied to the Airframe
ATPL Training / Airframes & Systems #1 Structures - Loads Applied to the Airframe
Published: 2017/01/08
Channel: Aviation Training Network
Airframe Components
Airframe Components
Published: 2010/03/02
Channel: AirframeComponents
Kenu Airframe Smartphone Car Mount
Kenu Airframe Smartphone Car Mount
Published: 2013/08/26
Channel: Lighty
Crye Precision Airframe ATX
Crye Precision Airframe ATX
Published: 2016/05/31
Channel: Shinobi- 275
Airframe Overview
Airframe Overview
Published: 2015/09/21
Channel: LightAfterNight
Robo-Airsoft: Robo Gear Review - JC Airsoft - Limitless AirFrame Repro Helmet
Robo-Airsoft: Robo Gear Review - JC Airsoft - Limitless AirFrame Repro Helmet
Published: 2016/12/06
Channel: Robo Murray Airsoft
Assembly of CSeries Static Test Airframe Underway
Assembly of CSeries Static Test Airframe Underway
Published: 2012/09/14
Channel: Bombardier
Airframe-and-Power-Plant Mechanics Job Description
Airframe-and-Power-Plant Mechanics Job Description
Published: 2007/06/20
Channel: GadBaller
Skinz Airframe install 2012 Ski Doo XP
Skinz Airframe install 2012 Ski Doo XP
Published: 2012/04/02
Channel: tudizzle
Dragonred Crye Airframe Helmet
Dragonred Crye Airframe Helmet
Published: 2016/03/03
Channel: Neptune Milsim
TMC "Crye Precision" Airframe Helmet Review
TMC "Crye Precision" Airframe Helmet Review
Published: 2014/03/11
Channel: Cravona
Airframe and Powerplant school promo
Airframe and Powerplant school promo
Published: 2012/08/09
Channel: 1930pictures
Airframe Icing - Instrument Approach [4K / HD]
Airframe Icing - Instrument Approach [4K / HD]
Published: 2015/06/09
Channel: Garry Wing
Kenu Airframe Car Mount Review
Kenu Airframe Car Mount Review
Published: 2015/01/24
Channel: BRENNAN'S TECH BITE
Crye Precision®: AirFrame™
Crye Precision®: AirFrame™
Published: 2015/02/17
Channel: cryeprecision
You Choose the Airframe
You Choose the Airframe
Published: 2016/08/18
Channel: Rotor Riot
Airframe and Powerplant, Generals Oral Part One
Airframe and Powerplant, Generals Oral Part One
Published: 2015/07/15
Channel: Lady.Wrench.Hand
PAIN X | CRYE AIRFRAME HELMET SYSTEM
PAIN X | CRYE AIRFRAME HELMET SYSTEM
Published: 2017/04/14
Channel: PAIN X
Airframe and Airframe+ from KENU
Airframe and Airframe+ from KENU
Published: 2014/07/22
Channel: Kenu
AIRFRAME PROJECT  | ST2Airsoft
AIRFRAME PROJECT | ST2Airsoft
Published: 2013/01/28
Channel: ST2Airsoft
Airframe & Powerplant Certification
Airframe & Powerplant Certification
Published: 2016/04/25
Channel: Seymour Johnson AFB
The Benefits of AirFrame Mattress Construction
The Benefits of AirFrame Mattress Construction
Published: 2015/12/01
Channel: Therm-a-Rest
AIRFRAME & POWERPLANT (ORAL) AIRFRAME PART 1
AIRFRAME & POWERPLANT (ORAL) AIRFRAME PART 1
Published: 2015/07/30
Channel: Lady.Wrench.Hand
MVCC Airframe and Powerplant Technology
MVCC Airframe and Powerplant Technology
Published: 2014/03/17
Channel: WeAreMVCC
UH 1Y Airframe
UH 1Y Airframe
Published: 2016/02/04
Channel: Bell Helicopter
"ASL Certified" HIRO Airframe Unboxing & Assembly
"ASL Certified" HIRO Airframe Unboxing & Assembly
Published: 2014/08/27
Channel: Marque Cornblatt Productions
Webinar: Airframe Ice: Avoidance and Escape
Webinar: Airframe Ice: Avoidance and Escape
Published: 2016/06/15
Channel: Air Safety Institute
ATPL Training / Airframes & Systems #2 Structures - Airframe Construction
ATPL Training / Airframes & Systems #2 Structures - Airframe Construction
Published: 2017/01/08
Channel: Aviation Training Network
ICON Airframe Pro Helmet Review at RevZilla.com
ICON Airframe Pro Helmet Review at RevZilla.com
Published: 2015/08/29
Channel: RevZilla
Flying the Weather: Airframe Icing
Flying the Weather: Airframe Icing
Published: 2013/11/14
Channel: Air Safety Institute
How to get an Airframe and Powerplants certification from military experience
How to get an Airframe and Powerplants certification from military experience
Published: 2015/08/31
Channel: Francisco Gonzalez
Airframe & Powerplant (ORAL) AIRFRAME PART 5
Airframe & Powerplant (ORAL) AIRFRAME PART 5
Published: 2015/08/14
Channel: Lady.Wrench.Hand
LEE
LEE 'JACKO' JACKSON AND MARK LAWLESS OF KAMPA DEMO THE AIRFRAME BIVVY
Published: 2015/03/03
Channel: ANGLERSMAILTV
FMA Manta Strobe and AirFrame Overview
FMA Manta Strobe and AirFrame Overview
Published: 2012/10/13
Channel: Extraordinaire
Icon Airframe & Airframe Carbon Fiber Helmet Review at RevZilla.com
Icon Airframe & Airframe Carbon Fiber Helmet Review at RevZilla.com
Published: 2010/08/02
Channel: RevZilla
Airframe Audiobook | Michael Crichton
Airframe Audiobook | Michael Crichton
Published: 2017/04/05
Channel: Blaine Cintron
Crye Precision Airframe Helmet Compared to TMC Replica
Crye Precision Airframe Helmet Compared to TMC Replica
Published: 2016/07/15
Channel: Grant Noyes
AIRFRAME PART 6
AIRFRAME PART 6
Published: 2015/08/15
Channel: Lady.Wrench.Hand
Drone Racing Airframe Abuse - HIRO 180-X Airframe
Drone Racing Airframe Abuse - HIRO 180-X Airframe
Published: 2016/09/26
Channel: Aerial Sports League
Airframe and Powerplant Mechanic
Airframe and Powerplant Mechanic
Published: 2014/01/01
Channel: smktechno terapan
Aviation Mechanic Practical Test Standards for Airframe Powerplant and General FAA S 8081 26A 27A an
Aviation Mechanic Practical Test Standards for Airframe Powerplant and General FAA S 8081 26A 27A an
Published: 2016/06/14
Channel: R. Augusta
OMLC Structural Airframe Assembler Training Program
OMLC Structural Airframe Assembler Training Program
Published: 2016/09/22
Channel: OMLC
Crye Precision Unboxing (AC Combat Pants, AirFlex Knee Pads, AirFrame Rails)
Crye Precision Unboxing (AC Combat Pants, AirFlex Knee Pads, AirFrame Rails)
Published: 2012/09/15
Channel: Extraordinaire
Aircraft animation (Airframe icing)
Aircraft animation (Airframe icing)
Published: 2008/04/14
Channel: davypassane
TMC Crye style Airframe (CAG WIP) MILSIM
TMC Crye style Airframe (CAG WIP) MILSIM
Published: 2016/04/19
Channel: Xander Wells
The Philippine Air Force PAF-MG-520s undergo airframe system maintenance
The Philippine Air Force PAF-MG-520s undergo airframe system maintenance
Published: 2017/06/18
Channel: update defense
T3 Airframe Video
T3 Airframe Video
Published: 2009/06/04
Channel: UKTecna
Kenu Airframe Plus Review deutsch
Kenu Airframe Plus Review deutsch
Published: 2015/03/10
Channel: 83metoo
MARSOC Airframe Overview
MARSOC Airframe Overview
Published: 2013/09/30
Channel: Extraordinaire
Interview: AV-8B Harrier Airframe Mechanic of 26th MEU VMM-266
Interview: AV-8B Harrier Airframe Mechanic of 26th MEU VMM-266
Published: 2013/07/23
Channel: okrajoe
NEXT
GO TO RESULTS [51 .. 100]

WIKIPEDIA ARTICLE

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Airframe diagram for an AgustaWestland AW101 helicopter

The airframe of an aircraft is its mechanical structure. It is typically considered to include fuselage, wings and undercarriage and exclude the propulsion system. Airframe design is a field of aerospace engineering that combines aerodynamics, materials technology and manufacturing methods to achieve balances of performance, reliability and cost.[1]

History[edit]

4 types of Airframe construction 1. Truss with canvas 2. Truss with corrugate plate 3. Monocoque construction 4. Semi-monocoque construction

Modern airframe history began in the United States when a 1903 wood biplane made by Orville and Wilbur Wright showed the potential of fixed-wing designs.

In 1912 the Deperdussin Monocoque pioneered the light, strong and streamlined monocoque fuselage formed of thin plywood layers over a circular frame, achieving 210 km/h (130 mph).[2][3]

First World War[edit]

Many early developments were spurred by military needs during World War I. Well known aircraft from that era include the Dutch designer Anthony Fokker's combat aircraft for the German Empire's Luftstreitkräfte, and U.S. Curtiss flying boats and the German/Austrian Taube monoplanes. These used hybrid wood and metal structures.

In 1916 the German Albatros D.III biplane fighters featured semi-monocoque fuselages with load-bearing plywood skin panels glued to longitudinal longerons and bulkheads ; it was replaced by the prevalent stressed skin structural configuration as metal replaced wood.[2]

German engineer Hugo Junkers first flew all-metal airframes in 1915 with the all-metal, cantilever-wing, stressed-skin monoplane Junkers J 1 made of steel.[2] It developed further with lighter weight duralumin in the airframe of the Junkers D.I of 1918, whose techniques were adopted almost unchanged after the war by both American engineer William Bushnell Stout and Soviet aerospace engineer Andrei Tupolev.

Between World wars[edit]

The J1 was followed in 1919 by the first all-metal transport aircraft, the Junkers F.13 made of Duralumin: 300 were built; and the first four-engine, all-metal passenger aircraft, the sole Zeppelin-Staaken E-4/20.[2][3] Commercial aircraft development during the 1920s and 1930s focused on monoplane designs using Radial engines. Some were produced as single copies or in small quantity such as the Spirit of St. Louis flown across the Atlantic by Charles Lindbergh in 1927. William Stout designed the all-metal Ford Trimotors in 1926.[4]

The Hall XFH naval fighter prototype flown in 1929 was the first aircraft with a riveted metal fuselage : an aluminum skin over steel tubing, Hall also pioneered flush rivets and butt joints between skin panels in the Hall PH flying boat also flying in 1929.[2] Based on the Italian Savoia-Marchetti S.56, the 1931 Budd BB-1 Pioneer experimental flying boat was constructed of corrosion-resistant stainless steel assembled with newly developed spot welding by U.S. railcar maker Budd Company.[2]

The original Junkers corrugated duralumin-covered airframe philosophy culminated in the 1932-origin Junkers Ju 52 trimotor airliner, used throughout World War II by the Nazi German Luftwaffe for transport and paratroop needs. Andrei Tupolev's designs in Joseph Stalin's Soviet Union designed a series of all-metal aircraft of steadily increasing size culminating in the largest aircraft of its era, the eight-engined Tupolev ANT-20 in 1934, and Donald Douglas' firm's developed the iconic Douglas DC-3 twin-engined airliner in 1936.[5] They were among the most successful designs to emerge from the era through the use of all-metal airframes.

In 1937, the Lockheed XC-35 was the first aircraft specifically constructed with cabin pressurization to underwent extensive high-altitude flight tests, paving the way for the first pressurised transport aircraft, the Boeing 307 Stratoliner.[3]

Wellington Mark X showing the geodesic airframe construction and the level of punishment it could withstand while maintaining airworthiness

Second World War[edit]

During World War II, military needs again dominated airframe designs. Among the best known were the US C-47 Skytrain, B-17 Flying Fortress, B-25 Mitchell and P-38 Lightning, and British Vickers Wellington that used a geodesic construction method, and Avro Lancaster, all revamps of original designs from the 1930s. The first jets were produced during the war but not made in large quantity.

Due to wartime scarcity of aluminum, the de Havilland Mosquito fighter-bomber was built from wood—plywood facings bonded to a balsawood core and formed using molds to produce monocoque structures, leading to the development of metal-to-metal bonding used later for the de Havilland Comet and Fokker F27 and F28.[2]

Postwar[edit]

Postwar commercial airframe design focused on airliners, on turboprop engines, and then on Jet engines : turbojets and later turbofans. The generally higher speeds and tensile stresses of turboprops and jets were major challenges.[6] Newly developed aluminum alloys with copper, magnesium and zinc were critical to these designs.[7]

Flown in 1952 and designed to cruise at Mach 2 where skin friction required its heat resistance, the Douglas X-3 Stiletto was the first titanium aircraft but it was underpowered and barely supersonic; the Mach 3.2 Lockheed A-12 and SR-71 were also mainly titanium, as was the cancelled Boeing 2707 Mach 2.7 supersonic transport.[2]

Because heat-resistant titanium is hard to weld and difficult to work with, welded nickel steel was used for the Mach 2.8 Mikoyan-Gurevich MiG-25 fighter, first flown in 1964; and the Mach 3.1 North American XB-70 Valkyrie used brazed stainless steel honeycomb panels and titanium but was cancelled by the time it flew in 1964.[2]

Computer-aided design system was developed in 1969 for the McDonnell Douglas F-15 Eagle, which first flew in 1974 along the Grumman F-14 Tomcat and both used Boron fiber composites in the tails; less expensive carbon fiber reinforced polymer were used for wing skins on the McDonnell Douglas AV-8B Harrier II, F/A-18 Hornet and Northrop Grumman B-2 Spirit.[2]

Modern era[edit]

Rough interior of a Boeing 747 airframe
Wing structure with ribs and one spar

Airbus and Boeing are the dominant assemblers of large jet airliners while ATR, Bombardier and Embraer lead the regional airliner market; many manufacturers produce airframe components.[relevant? ]

The vertical stabilizer of the Airbus A310-300, first flown in 1985, was the first carbon-fiber primary structure used in a commercial aircraft; composites are increasingly used since in Airbus airliners: the horizontal stabilizer of the A320 in 1987 and A330/A340 in 1994, and the center wing-box and aft fuselage of the A380 in 2005.[2]

The Cirrus SR20, type certificated in 1998, was the first widely produced general aviation aircraft manufactured with all-composite construction, followed by several other light aircraft in the 2000s.[8]

The Boeing 787, first flown in 2009, was the first commercial aircraft with 50% of its structure weight made of carbon-fiber composites, along 20% Aluminum and 15% titanium: the material allows for a lower-drag, higher wing aspect ratio and higher cabin pressurization; the competing Airbus A350, flown in 2013, is 53% carbon-fiber by structure weight.[2] It has a one-piece carbon fiber fuselage, said to replace "1,200 sheets of aluminum and 40,000 rivets."[9]

The 2013 Bombardier CSeries have a dry-fiber resin transfer infusion wing with a lightweight aluminium-lithium alloy fuselage for damage resistance and repairability, a combination which could be used for future narrow-body aircraft.[2] In February 2017, Airbus installed a 3D printing machine for titanium aircraft structural parts using electron beam additive manufacturing from Sciaky, Inc..[10]

Safety[edit]

Airframe production has become an exacting process. Manufacturers operate under strict quality control and government regulations. Departures from established standards become objects of major concern.[11]

DH106 Comet 3 G-ANLO demonstrating at the 1954 Farnborough Airshow

A landmark in aeronautical design, the world's first jet airliner, the de Havilland Comet, first flew in 1949. Early models suffered from catastrophic airframe metal fatigue, causing a series of widely publicised accidents. The Royal Aircraft Establishment investigation at Farnborough Airport founded the science of aircraft crash reconstruction. After 3000 pressurisation cycles in a specially constructed pressure chamber, airframe failure was found to be due to stress concentration, a consequence of the square shaped windows. The windows had been engineered to be glued and riveted, but had been punch riveted only. Unlike drill riveting, the imperfect nature of the hole created by punch riveting may cause the start of fatigue cracks around the rivet.

The Lockheed L-188 Electra turboprop, first flown in 1957 became a costly lesson in controlling oscillation and planning around metal fatigue. Its 1959 crash of Braniff Flight 542 showed the difficulties that the airframe industry and its airline customers can experience when adopting new technology.

The incident bears comparison with the Airbus A300 crash on takeoff of the American Airlines Flight 587 in 2001, after its vertical stabilizer broke away from the fuselage, called attention to operation, maintenance and design issues involving composite materials that are used in many recent airframes.[12][13][14] The A300 had experienced other structural problems but none of this magnitude.

See also[edit]

Notes and references[edit]

  1. ^ Michael C. Y. Niu (1988). Airframe Structural Design. Conmilit Press LTD.
  2. ^ a b c d e f g h i j k l m Graham Warwick (Nov 21, 2016). "Designs That Changed The Way Aircraft Are Built". Aviation Week & Space Technology. 
  3. ^ a b c Richard P. Hallion (July 2008). "Airplanes that Transformed Aviation". Air & space magazine. Smithsonian. 
  4. ^ David A. Weiss (1996). The Saga of the Tin Goose. Cumberland Enterprises. 
  5. ^ Peter M. Bowers (1986). The DC-3: 50 Years of Legendary Flight. Tab Books. 
  6. ^ Charles D. Bright (1978). The Jet Makers: the Aerospace Industry from 1945 to 1972. Regents Press of Kansas. 
  7. ^ Aircraft and Aerospace Applications. Key to Metals Database. INI International. 2005. 
  8. ^ "Top 100 Airplanes:Platinum Edition". Flying. November 11, 2013. p. 11. 
  9. ^ Leslie Wayne (May 7, 2006). "Boeing Bets the House on Its 787 Dreamliner". New York Times. 
  10. ^ Graham Warwick (Jan 11, 2017). "Airbus To 3-D Print Airframe Structures". Aviation Week & Space Technology. 
  11. ^ Florence Graves and Sara K. Goo (Apr 17, 2006). "Boeing Parts and Rules Bent, Whistle-Blowers Say". Washington Post. Retrieved April 23, 2010. 
  12. ^ Todd Curtis (2002). "Investigation of the Crash of American Airlines Flight 587". AirSafe.com. 
  13. ^ James H. Williams, Jr. (2002). "Flight 587". Massachusetts Institute of Technology. 
  14. ^ Sara Kehaulani Goo (Oct 27, 2004). "NTSB Cites Pilot Error in 2001 N.Y. Crash". Washington Post. Retrieved April 23, 2010. 

Disclaimer

None of the audio/visual content is hosted on this site. All media is embedded from other sites such as GoogleVideo, Wikipedia, YouTube etc. Therefore, this site has no control over the copyright issues of the streaming media.

All issues concerning copyright violations should be aimed at the sites hosting the material. This site does not host any of the streaming media and the owner has not uploaded any of the material to the video hosting servers. Anyone can find the same content on Google Video or YouTube by themselves.

The owner of this site cannot know which documentaries are in public domain, which has been uploaded to e.g. YouTube by the owner and which has been uploaded without permission. The copyright owner must contact the source if he wants his material off the Internet completely.

Powered by YouTube
Wikipedia content is licensed under the GFDL and (CC) license