Share
VIDEOS 1 TO 50
Camshaft Specs Explained - Engine Masters Ep. 19
Camshaft Specs Explained - Engine Masters Ep. 19
Published: 2017/04/03
Channel: Motor Trend Channel
What is a camshaft? Quick, simple definition with animation.
What is a camshaft? Quick, simple definition with animation.
Published: 2014/02/18
Channel: Carlyle's Picks
Camshaft - High Lift and Duration - Increase Horsepower
Camshaft - High Lift and Duration - Increase Horsepower
Published: 2013/05/01
Channel: Engineering Explained
Engine basics explained, whats a camshaft do?
Engine basics explained, whats a camshaft do?
Published: 2012/10/03
Channel: Will Foster
Engine camshaft animation (500-7000 rpm at the end)
Engine camshaft animation (500-7000 rpm at the end)
Published: 2013/05/20
Channel: miroshi
Race Camshaft, Street Cam, RV Camshaft: What is the Difference - Summit Racing Quick Flicks
Race Camshaft, Street Cam, RV Camshaft: What is the Difference - Summit Racing Quick Flicks
Published: 2012/06/26
Channel: Summit Racing
Camshaft & Valve Animation Training - Automotive Appreciation Part 2
Camshaft & Valve Animation Training - Automotive Appreciation Part 2
Published: 2012/11/26
Channel: technicaltraining1
Comp Cams - How it
Comp Cams - How it's Made
Published: 2010/10/19
Channel: Speedway Motors
5 Quick Tips For Replacing Camshafts
5 Quick Tips For Replacing Camshafts
Published: 2017/08/13
Channel: HumbleMechanic
How to install a camshaft in a Small Block Ford 302 5.0 | E303 Cam Install
How to install a camshaft in a Small Block Ford 302 5.0 | E303 Cam Install
Published: 2013/09/26
Channel: archifxllc
Best Tips for Breaking in a New Camshaft
Best Tips for Breaking in a New Camshaft
Published: 2012/10/16
Channel: The Horsepower Monster
Removal and Inspection of A Camshaft and Lifters
Removal and Inspection of A Camshaft and Lifters
Published: 2013/01/28
Channel: Bullshitkorner
600hp Camshaft Shootout! Hydraulic vs. Solid. - Engine Masters Ep. 10
600hp Camshaft Shootout! Hydraulic vs. Solid. - Engine Masters Ep. 10
Published: 2016/06/13
Channel: Motor Trend Channel
How a camshaft is made
How a camshaft is made
Published: 2015/05/13
Channel: George Barnes
Engine Building Part 5:   Camshafts
Engine Building Part 5: Camshafts
Published: 2013/10/07
Channel: Pete's Garage
How to Degree Your Camshaft
How to Degree Your Camshaft
Published: 2013/09/13
Channel: The Horsepower Monster
How to install camshaft.wmv
How to install camshaft.wmv
Published: 2011/06/04
Channel: max
How To Degree a Camshaft
How To Degree a Camshaft
Published: 2016/11/30
Channel: EricTheCarGuy
Camshaft Specs. What they Mean
Camshaft Specs. What they Mean
Published: 2013/12/23
Channel: Myvintageiron7512
Speedway Tech Talk  - Basics of Choosing the Right Camshaft
Speedway Tech Talk - Basics of Choosing the Right Camshaft
Published: 2016/05/21
Channel: Speedway Motors
Measuring a camshaft
Measuring a camshaft
Published: 2013/07/09
Channel: Justin Miller
VW TDI and Audi TDI bad camshaft removal and replacement procedure DIY
VW TDI and Audi TDI bad camshaft removal and replacement procedure DIY
Published: 2012/09/13
Channel: myturbodieseldotcom
Milling a camshaft (with EMC2)
Milling a camshaft (with EMC2)
Published: 2011/03/30
Channel: MuellerNick
COMP Cams® Technology Explained: Common Valve Train Terminology
COMP Cams® Technology Explained: Common Valve Train Terminology
Published: 2012/07/17
Channel: COMP Cams
COME Racing grinding a Holden V8 steel roller camshaft
COME Racing grinding a Holden V8 steel roller camshaft
Published: 2013/08/13
Channel: comeracing
How to remove camshaft bearings
How to remove camshaft bearings
Published: 2016/02/02
Channel: Justin Miller
How To - Install A Camshaft And Lifters
How To - Install A Camshaft And Lifters
Published: 2016/03/10
Channel: Tom's Auto Repair
383 Stroker Engine Build Part 7 (Camshaft)
383 Stroker Engine Build Part 7 (Camshaft)
Published: 2015/01/26
Channel: Myvintageiron7512
Camshaft Specifications | Summit Racing Quick Flicks
Camshaft Specifications | Summit Racing Quick Flicks
Published: 2012/03/08
Channel: Summit Racing
Project Street Sleeper Part 12: Camshaft Install, Performance Test & More!
Project Street Sleeper Part 12: Camshaft Install, Performance Test & More!
Published: 2014/08/01
Channel: Tom's Turbo Garage
Camshafts (Part 1) - Stock versus Performance Camshafts
Camshafts (Part 1) - Stock versus Performance Camshafts
Published: 2011/10/17
Channel: Moss Motors, Ltd.
Replace camshaft position sensor
Replace camshaft position sensor
Published: 2009/07/28
Channel: Scotty Kilmer
Camshaft working in hindi video
Camshaft working in hindi video
Published: 2017/03/20
Channel: Machenical - MJ
350Z PROBLEMS. Crank and camshaft position sensors replaced.
350Z PROBLEMS. Crank and camshaft position sensors replaced.
Published: 2017/05/31
Channel: Joe Flo
PT Cruiser Camshaft Position Sensor Replacement
PT Cruiser Camshaft Position Sensor Replacement
Published: 2011/09/09
Channel: trenchfoe
Chevy Malibu Exhaust camshaft solenoid P0014
Chevy Malibu Exhaust camshaft solenoid P0014
Published: 2016/01/26
Channel: Tom A
GM Vehicles 3.1L & 3.4L V6 P0341: Camshaft Sensor Replacement
GM Vehicles 3.1L & 3.4L V6 P0341: Camshaft Sensor Replacement
Published: 2016/05/06
Channel: BSG Automotive
Top Ten Reasons for Camshaft & Lifter Failure
Top Ten Reasons for Camshaft & Lifter Failure
Published: 2017/02/14
Channel: COMP Cams
How to measure camshaft lift
How to measure camshaft lift
Published: 2012/02/25
Channel: Emil Davis
How to replace a camshaft position sensor in a 2005 Ford Expedition
How to replace a camshaft position sensor in a 2005 Ford Expedition
Published: 2015/11/20
Channel: Everything_CJ
How To Replace Bank 1 Camshaft Sensor on Infiniti FX35 G35 3.5L V6 Code P0340
How To Replace Bank 1 Camshaft Sensor on Infiniti FX35 G35 3.5L V6 Code P0340
Published: 2017/01/03
Channel: AutoRex
How to Test Crankshaft and Camshaft Position Sensors
How to Test Crankshaft and Camshaft Position Sensors
Published: 2015/08/04
Channel: Ratchets And Wrenches
Nissan Murano Camshaft Sensor Tips
Nissan Murano Camshaft Sensor Tips
Published: 2016/05/23
Channel: Desert Car Care
Chrysler 300 3.5 camshaft sensor location and replacement
Chrysler 300 3.5 camshaft sensor location and replacement
Published: 2014/02/25
Channel: Cody the Car Guy
Nissan Murano Camshaft Sensor Replacement
Nissan Murano Camshaft Sensor Replacement
Published: 2014/09/24
Channel: Joe S.
Camshaft Position Sensor - GM 3.1 - Easy Walkthrough for anyone!
Camshaft Position Sensor - GM 3.1 - Easy Walkthrough for anyone!
Published: 2015/12/27
Channel: films128
P0340 Error? Car won
P0340 Error? Car won't start? Here's a Quick Fix! For Camshaft sensor.
Published: 2016/08/20
Channel: comeinhandynow
2003 VW Passat 1.8T - Camshaft position sensor - P0341 error code
2003 VW Passat 1.8T - Camshaft position sensor - P0341 error code
Published: 2016/01/09
Channel: HowToFixIt
04 dodge neon camshaft position sensor replacment
04 dodge neon camshaft position sensor replacment
Published: 2015/05/17
Channel: itsfiascoyo0387
How to choose an LS camshaft for street performance ~ VCM
How to choose an LS camshaft for street performance ~ VCM
Published: 2014/04/30
Channel: Fullboost
NEXT
GO TO RESULTS [51 .. 100]

WIKIPEDIA ARTICLE

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Computer animation of a camshaft operating valves

A camshaft is a shaft to which a cam is fastened or of which a cam forms an integral part.[1]

History[edit]

The camshaft was first described in Turkey (Diyarbakır) by Al-Jazari in 1206. He employed it as part of his automata, water-raising machines, and water clocks such as the castle clock.[2] The camshaft later appeared in European mechanisms from the 14th century.[3]

Among the first cars to utilize engines with single overhead camshafts were the Maudslay designed by Alexander Craig and introduced in 1902[4] and the Marr Auto Car designed by Michigan native Walter Lorenzo Marr in 1903.[5][6]

Uses[edit]

In internal combustion engines with pistons, the camshaft is used to operate poppet valves. It consists of a cylindrical rod running the length of the cylinder bank with a number of oblong lobes protruding from it, one for each valve. The cam lobes force the valves open by pressing on the valve, or on some intermediate mechanism, as they rotate.

Automotive[edit]

Materials[edit]

Camshafts can be made out of several types of material. These include:

Chilled iron castings: Commonly used in high volume production, chilled iron camshafts have good wear resistance since the chilling process hardens them. Other elements are added to the iron before casting to make the material more suitable for its application.

Billet Steel: When a high quality camshaft or low volume production is required, engine builders and camshaft manufacturers choose steel billet. This is a much more time consuming process, and is generally more expensive than other methods. However, the finished product is far superior. CNC lathes, CNC milling machines, and CNC camshaft grinders will be used during production. Different types of steel bar can be used, one example being EN40b. When manufacturing a camshaft from EN40b, the camshaft will also be heat treated via gas nitriding, which changes the micro-structure of the material. It gives a surface hardness of 55-60 HRC. These types of camshafts can be used in high-performance engines.

Timing[edit]

A steel billet racing camshaft with noticeably broad lobes (very long duration)

The relationship between the rotation of the camshaft and the rotation of the crankshaft is of critical importance. Since the valves control the flow of the air/fuel mixture intake and exhaust gases, they must be opened and closed at the appropriate time during the stroke of the piston. For this reason, the camshaft is connected to the crankshaft either directly, via a gear mechanism, or indirectly via a belt or chain called a timing belt or timing chain. Direct drive using gears is unusual because of the cost. The frequently reversing torque caused by the slope of the cams tends to cause gear rattle which for an all-metal gear train requires further expense of a cam damper. Rolls-Royce V8 (1954) used gear drive as, unlike chain, it could be made silent and to last the life of the engine.[7] Where gears are used in cheaper cars, they tend to be made from resilient fibre rather than metal, except in racing engines that have a high maintenance routine. Fibre gears have a short life span and must be replaced regularly, much like a timing belt. In some designs the camshaft also drives the distributor and the oil and fuel pumps. Some vehicles may have the power steering pump driven by the camshaft. With some early fuel injection systems, cams on the camshaft would operate the fuel injectors. Honda redesigned the VF750 motorcycle from chain drive to the gear drive VFR750 due to insurmountable problems with the VF750 Hi-Vo inverted chain drive.

An alternative used in the early days of OHC engines was to drive the camshaft(s) via a vertical shaft with bevel gears at each end. This system was, for example, used on the pre-World War I Peugeot and Mercedes Grand Prix cars. Another option was to use a triple eccentric with connecting rods; these were used on certain W.O. Bentley-designed engines and also on the Leyland Eight.

In a two-stroke engine that uses a camshaft, each valve is opened once for every rotation of the crankshaft; in these engines, the camshaft rotates at the same speed as the crankshaft. In a four-stroke engine, the valves are opened only half as often; thus, two full rotations of the crankshaft occur for each rotation of the camshaft.

The timing of the camshaft can be advanced to produce better low RPM torque, or retarded for better high RPM power. Changing cam timing moves the overall power produced by the engine down or up the RPM scale. The amount of change is very little (usually < 5 deg), and affects valve to piston clearances. Refer to this video https://www.youtube.com/watch?v=Hz1RE0ugcfU

Duration[edit]

Duration is the number of crankshaft degrees of engine rotation during which the valve is off the seat. In general, greater duration results in more horsepower. The RPM at which peak horsepower occurs is typically increased as duration increases at the expense of lower rpm efficiency (torque).[citation needed]

Duration specifications can often be misleading because manufacturers may select any lift point from which to advertise a camshaft's duration and sometimes will manipulate these numbers. The power and idle characteristics of a camshaft rated at a .006" lift point will be much different from one with the same rating at a .002" lift point.

Many performance engine builders gauge a race profile's aggressiveness by looking at the duration at .020", .050" and .200". The .020" number determines how responsive the motor will be and how much low end torque the motor will make. The .050" number is used to estimate where peak power will occur, and the .200" number gives an estimate of the power potential.

A secondary effect of increased duration can be increased overlap, which is the number of crankshaft degrees during which both intake and exhaust valves are off their seats. It is overlap which most affects idle quality, inasmuch as the "blow-through" of the intake charge immediately back out thru the exhaust valve which occurs during overlap reduces engine efficiency, and is greatest during low RPM operation. In general, increasing a camshaft's duration typically increases the overlap, unless the intake and exhaust lobe centers are moved apart to compensate.

Lift[edit]

The camshaft "lift" is the resultant net rise of the valve from its seat. The farther the valve rises from its seat the more airflow can be provided, which is generally more beneficial. Greater lift has some limitations. Firstly, lift is limited by the increased proximity of the valve head to the piston crown and secondly, greater effort is required to move the valve springs to a higher state of compression. Increased lift can also be limited by lobe clearance in the cylinder head casting. Higher valve lift can have the same effect as increased duration where valve overlap is less desirable.

Higher lift allows greater airflow; although even by allowing a larger volume of air to pass thru the larger opening, the brevity of the typical duration with a higher lift cam results in less airflow than with a cam with lower lift but more duration, all else being equal. On forced induction motors this higher lift could yield better results than longer duration, particularly on the intake side. Notably though, higher lift has more potential problems than increased duration, in particular as valve train rpm rises which can result in less efficient running or loss of torque.

Cams that have excessive valve lift, running at high rpm, can cause what is called "valve float", where the valve spring tension is insufficient to keep the valve following the cam at its apex. This could also be a result of a very steep rise of the lobe, where the valve is effectively shot off the end of the cam rather than following the cams’ profile. This is typically what happens when a motor over revs. This is where the engine rpm exceeds the maximum design rpm. The valve train is typically the limiting factor in determining the maximum rpm the engine can maintain either for a prolonged period or temporarily. Sometimes an over rev can cause engine failure when the valves become bent as a result of colliding with the piston crowns.

Position[edit]

Depending on the location of the camshaft, the cam operates the valves either directly or through a linkage of pushrods and rockers. Direct operation involves a simpler mechanism and leads to fewer failures, but requires the camshaft to be positioned at the top of the cylinders. In the past when engines were not as reliable as today this was seen as too much trouble, but in modern gasoline engines the overhead cam system, where the camshaft is on top of the cylinder head, is quite common.

Number of camshafts[edit]

While today some engines rely on a single camshaft per cylinder bank, which is known as a single overhead camshaft (SOHC), most[quantify] modern engines are driven by a two camshafts per cylinder bank arrangement (one camshaft for the intake valves and another for the exhaust valves); such camshaft arrangement is known as a double or dual overhead cam (DOHC), thus, a V engine, which has two separate cylinder banks, may have four camshafts (colloquially known as a quad-cam engine[8]).

More unusual is the modern W engine (also known as a 'VV' engine to distinguish itself from the pre-war W engines) that has four cylinder banks arranged in a "W" pattern with two pairs narrowly arranged with a 15-degree separation. Even when there are four cylinder banks (that would normally require a total of eight individual camshafts), the narrow-angle design allows the use of just four camshafts in total. For the Bugatti Veyron, which has a 16-cylinder W engine configuration, the four camshafts are driving a total of 64 valves.

The overhead camshaft design adds more valvetrain components that ultimately result in more complexity and higher manufacturing costs, but this is easily offset by many advantages over the older design: multi-valve design, higher RPM limit, and design freedom to better place valves, spark plugs (Spark-ignition engine), and intake/exhaust ports.

Maintenance[edit]

The rockers or cam followers sometimes incorporate a mechanism to adjust the valve lash through manual adjustment, but most modern auto engines have hydraulic lifters, eliminating the need to adjust the valve lash at regular intervals as the valvetrain wears, in particular the valves and valve seats in the combustion chamber.

Sliding friction between the surface of the cam and the cam follower which rides upon it can be considerable. In order to reduce wear at this point, the cam and follower are both surface hardened, and modern lubricant motor oils contain additives specifically to reduce sliding friction. The lobes of the camshaft are usually slightly tapered and the faces of the valve lifters slightly domed, causing the lifters to rotate to distribute wear on the parts. The surfaces of the cam and follower are designed to "wear in" together, and therefore each follower should stay with its original cam lobe and never be moved to a different lobe. You can put new lifters on an old cam but never old lifters on a new cam. In some engines the followers have rollers which eliminate the sliding friction and wear but add mass to the valvetrain.

Camshaft bearings are similar to crankshaft main bearings, being pressure-fed with oil. However, overhead camshaft bearings do not always have replaceable bearing shells, meaning that a new cylinder head is required if the bearings suffer wear due to insufficient or dirty oil.

Alternatives[edit]

In addition to mechanical friction, considerable force is required to compress the valve springs used to close the engine's valves. This can amount to an estimated 25% of an engine's total output at idle, reducing overall efficiency. Some approaches to reclaiming this "wasted" energy include:

Ignition systems[edit]

In mechanically timed ignition systems, a separate cam in the distributor is geared to the engine and operates a set of breaker points that trigger a spark at the correct time in the combustion cycle.

Electrical[edit]

Before the advent of solid state electronics, camshaft controllers were used to control the speed of electric motors. A camshaft, driven by an electric motor or a pneumatic motor, was used to operate contactors in sequence. By this means, resistors or tap changers were switched in or out of the circuit to vary the speed of the main motor. This system was mainly used in electric multiple units and electric locomotives.[10]

Gallery[edit]

Four stroke engine diagram.jpg Components of a typical, four-stroke cycle, DOHC piston engine. (E) Exhaust camshaft, (I) Intake camshaft, (S) Spark plug, (V) Valves, (P) Piston, (R) Connecting rod, (C) Crankshaft, (W) Water jacket for coolant flow.
4StrokeEngine Ortho 3D Small.gif Double overhead cams control the opening and closing of a cylinder's valves.
  1. Intake
  2. Compression
  3. Power
  4. Exhaust
  5. Repeat
FordtaunusV4front.jpg Valve timing gears on a Ford Taunus four-cylinder engine — the small gear is on the crankshaft, the larger gear is on the camshaft. The gear ratio causes the camshaft to run at half the RPM of the crankshaft.

See also[edit]

References[edit]

  1. ^ "Camshaft definition by Merriam-Webster". Merriam-webster.com. 2010-08-13. Retrieved 2010-11-07. 
  2. ^ Georges Ifrah (2001). The Universal History of Computing: From the Abacus to the Quatum Computer, p. 171, Trans. E.F. Harding, John Wiley & Sons, Inc. (See [1])
  3. ^ A. Lehr (1981), De Geschiedenis van het Astronomisch Kunstuurwerk, p. 227, Den Haag. (See [2])
  4. ^ References:
  5. ^ Marr Auto Car Company
  6. ^ Kimes, Beverly Rae (2007). Walter L Marr: Buick's Amazing Engineer. Racemaker Press. p. 40. ISBN 0976668343. 
  7. ^ http://www.rrec.org.uk/Cars/Rolls-Royce_Motor_Car_Engines/The_V8_Engine_Birth_&_Beginnings.php
  8. ^ Carspector definition: Quad-cam http://carspector.com/dictionary/Q/quad-cam-engine/
  9. ^ The Future of the Internal Combustion Engine - Inside Koenigsegg on YouTube
  10. ^ http://www.railway-technical.com/trains/rolling-stock-index-l/electric-locomotives.html

External links[edit]

  • The dictionary definition of camshaft at Wiktionary
  • Media related to Camshafts at Wikimedia Commons

Disclaimer

None of the audio/visual content is hosted on this site. All media is embedded from other sites such as GoogleVideo, Wikipedia, YouTube etc. Therefore, this site has no control over the copyright issues of the streaming media.

All issues concerning copyright violations should be aimed at the sites hosting the material. This site does not host any of the streaming media and the owner has not uploaded any of the material to the video hosting servers. Anyone can find the same content on Google Video or YouTube by themselves.

The owner of this site cannot know which documentaries are in public domain, which has been uploaded to e.g. YouTube by the owner and which has been uploaded without permission. The copyright owner must contact the source if he wants his material off the Internet completely.

Powered by YouTube
Wikipedia content is licensed under the GFDL and (CC) license