Play Video
1
Centromeres and Telomeres tutorial
Centromeres and Telomeres tutorial
::2014/03/21::
Play Video
2
Centromere
Centromere
::2014/09/27::
Play Video
3
Chromosomes, Chromatids, Chromatin, etc.
Chromosomes, Chromatids, Chromatin, etc.
::2009/09/23::
Play Video
4
Chromosome Structure
Chromosome Structure
::2012/02/10::
Play Video
5
Another Century
Another Century's Episode 3 - Centromere
::2010/09/24::
Play Video
6
Metaphase: The Second Stage of Mitosis
Metaphase: The Second Stage of Mitosis
::2010/10/17::
Play Video
7
Mitosis
Mitosis
::2009/10/20::
Play Video
8
centromere: kurious oranj
centromere: kurious oranj
::2008/12/08::
Play Video
9
Centromere Clustering
Centromere Clustering
::2014/03/14::
Play Video
10
How to Pronounce Centromere
How to Pronounce Centromere
::2013/12/07::
Play Video
11
Centromere Cluster
Centromere Cluster
::2011/11/02::
Play Video
12
Centromere - ATP (Music Only)
Centromere - ATP (Music Only)
::2014/05/12::
Play Video
13
Centromere - edited by Heesung
Centromere - edited by Heesung
::2014/09/19::
Play Video
14
What Is The Definition Of Centromere Medical Dictionary Free Online
What Is The Definition Of Centromere Medical Dictionary Free Online
::2014/09/21::
Play Video
15
economic centromere soul clip41
economic centromere soul clip41
::2014/08/01::
Play Video
16
economic centromere soul clip29
economic centromere soul clip29
::2014/08/01::
Play Video
17
Centromere
Centromere
::2011/06/17::
Play Video
18
economic centromere soul clip53
economic centromere soul clip53
::2014/08/01::
Play Video
19
economic centromere soul clip35
economic centromere soul clip35
::2014/08/01::
Play Video
20
economic centromere soul clip46
economic centromere soul clip46
::2014/08/01::
Play Video
21
economic centromere soul clip2
economic centromere soul clip2
::2014/08/01::
Play Video
22
economic centromere soul clip19
economic centromere soul clip19
::2014/08/01::
Play Video
23
economic centromere soul clip74
economic centromere soul clip74
::2014/08/01::
Play Video
24
economic centromere soul clip40
economic centromere soul clip40
::2014/08/01::
Play Video
25
economic centromere soul clip14
economic centromere soul clip14
::2014/08/01::
Play Video
26
economic centromere soul clip90
economic centromere soul clip90
::2014/08/01::
Play Video
27
economic centromere soul clip57
economic centromere soul clip57
::2014/08/01::
Play Video
28
economic centromere soul clip80
economic centromere soul clip80
::2014/08/01::
Play Video
29
economic centromere soul clip43
economic centromere soul clip43
::2014/08/01::
Play Video
30
economic centromere soul clip12
economic centromere soul clip12
::2014/08/01::
Play Video
31
economic centromere soul clip32
economic centromere soul clip32
::2014/08/01::
Play Video
32
economic centromere soul clip15
economic centromere soul clip15
::2014/08/01::
Play Video
33
Centromere dispute
Centromere dispute
::2014/01/26::
Play Video
34
economic centromere soul clip82
economic centromere soul clip82
::2014/08/01::
Play Video
35
economic centromere soul clip69
economic centromere soul clip69
::2014/08/01::
Play Video
36
economic centromere soul clip86
economic centromere soul clip86
::2014/08/01::
Play Video
37
economic centromere soul clip70
economic centromere soul clip70
::2014/08/01::
Play Video
38
economic centromere soul clip54
economic centromere soul clip54
::2014/08/01::
Play Video
39
economic centromere soul clip23
economic centromere soul clip23
::2014/08/01::
Play Video
40
economic centromere soul clip39
economic centromere soul clip39
::2014/08/01::
Play Video
41
economic centromere soul clip45
economic centromere soul clip45
::2014/08/01::
Play Video
42
economic centromere soul clip60
economic centromere soul clip60
::2014/08/01::
Play Video
43
economic centromere soul clip75
economic centromere soul clip75
::2014/08/01::
Play Video
44
economic centromere soul clip28
economic centromere soul clip28
::2014/08/01::
Play Video
45
economic centromere soul clip84
economic centromere soul clip84
::2014/08/01::
Play Video
46
economic centromere soul clip25
economic centromere soul clip25
::2014/08/01::
Play Video
47
economic centromere soul clip3
economic centromere soul clip3
::2014/08/01::
Play Video
48
economic centromere soul clip20
economic centromere soul clip20
::2014/08/01::
Play Video
49
economic centromere soul clip73
economic centromere soul clip73
::2014/08/01::
Play Video
50
economic centromere soul clip13
economic centromere soul clip13
::2014/08/01::
NEXT >>
RESULTS [51 .. 101]
From Wikipedia, the free encyclopedia
Jump to: navigation, search
In this diagram of a duplicated chromosome, (2) identifies the centromere—the region that joins the two sister chromatids, or each half of the chromosome. In prophase of mitosis, specialized regions on centromeres called kinetochores attach chromosomes to spindle fibers.

The centromere is the part of a chromosome that links sister chromatids. During mitosis, spindle fibers attach to the centromere via the kinetochore.[1] Centromeres were first defined as genetic loci that direct the behavior of chromosomes. Their physical role is to act as the site of assembly of the kinetochore - a highly complex multiprotein structure that is responsible for the actual events of chromosome segregation - e.g. binding microtubules and signalling to the cell cycle machinery when all chromosomes have adopted correct attachments to the spindle, so that it is safe for cell division to proceed to completion (i.e. for cells to enter anaphase).[2] There are broadly speaking two types of centromeres. "Point centromeres" bind to specific proteins that recognise particular DNA sequences with high efficiency.[3] Any piece of DNA with the point centromere DNA sequence on it will typically form a centromere if present in the appropriate species. The best characterised point centromeres are those of the budding yeast, Saccharomyces cerevisiae. "Regional centromeres" is the term coined to describe most centromeres, which typically form on regions of preferred DNA sequence, but which can form on other DNA sequences as well.[3] The signal for formation of a regional centromere appears to be epigenetic. Most organisms, ranging from the fission yeast Schizosaccharomyces pombe to humans, have regional centromeres.

Regarding mitotic chromosome structure, centromeres represent a constricted region of the chromosome (often referred to as the primary constriction) where two identical sister chromatids are most closely in contact. When cells enter mitosis, the sister chromatids (which represent the two copies of each chromosomal DNA molecule resulting from DNA replication earlier in the cell cycle and packaged by histones and other proteins into chromatin) are linked all along their length by the action of the cohesin complex. It is now believed that this complex is mostly released from chromosome arms during prophase, so that by the time the chromosomes line up at the mid-plane of the mitotic spindle (also known as the metaphase plate), the last place where they are linked with one another is in the chromatin in and around the centromere.[4]

Positions[edit]

Each chromosome has two arms, labeled p (the shorter of the two) and q (the longer). The p arm is named for "petit" meaning 'small'; the q arm is named q simply because it follows p in the alphabet. (According to the NCBI, "q" refers to the French word "queue" meaning 'tail'.) They can be connected in either metacentric, submetacentric, acrocentric or telocentric manner.[citation needed]

Metacentric[edit]

These are X-shaped chromosomes, with the centromere in the middle so that the two arms of the chromosomes are almost equal.

A chromosome is metacentric if its two arms are roughly equal in length. In a normal human karyotype, two chromosomes are considered metacentric: chromosomes 1 and 3. In some cases, a metacentric chromosome is formed by balanced translocation: the fusion of two acrocentric chromosomes to form one metacentric chromosome.[5]

Submetacentric[edit]

If arms' lengths are unequal, the chromosome is said to be submetacentric.[6]

Acrocentric[edit]

If the p (short) arm is so short that it is hard to observe, but still present, then the chromosome is acrocentric (the "acro-" in acrocentric refers to the Greek word for "peak"). The human genome includes six acrocentric chromosomes: 13, 14, 15, 21, 22, and Y.[6]

In an acrocentric chromosome the p arm contains genetic material including repeated sequences such as nucleolar organizing regions, and can be translocated without significant harm, as in a balanced Robertsonian translocation. The domestic horse genome includes one metacentric chromosome that is homologous to two acrocentric chromosomes in the conspecific but undomesticated Przewalski's horse.[7] This may reflect either fixation of a balanced Robertsonian translocation in domestic horses or, conversely, fixation of the fission of one metacentric chromosome into two acrocentric chromosomes in Przewalski's horses. A similar situation exists between the human and great ape genomes; in this case, because more species are extant, it is apparent that the evolutionary sequence is a reduction of two acrocentric chromosomes in the great apes to one metacentric chromosome in humans (see Karyotype#Aneuploidy).[6]

Telocentric[edit]

A telocentric chromosome's centromere is located at the terminal end of the chromosome. Telomeres may extend from both ends of the chromosome. For example, the standard house mouse karyotype has only telocentric chromosomes.[8][9] Humans do not possess telocentric chromosomes.

Subtelocentric[edit]

If the chromosome's centromere is located closer to its end than to its center, it may be described as subtelocentric.[citation needed]

Holocentric[edit]

With holocentric chromosomes, the entire length of the chromosome acts as the centromere. Examples of this type of centromere can be found scattered throughout the plant and animal kingdoms,[10] with the most well known example being the nematode Caenorhabditis elegans.

Human Chromosomes[edit]

Chromosome Centromere position (Mbp) Chromosome Size (Mbp)
1 125.0 metacentric 247
2 93.3 243
3 91.0 metacentric
4 50.4
5 48.4
6 61.0
7 59.9
8 45.6
9 49.0
10 40.2
11 53.7
12 35.8
13 17.9 acrocentric 114
14 17.6 acrocentric
15 19.0 acrocentric
16 36.6
17 24.0
18 17.2
19 26.5
20 27.5
21 13.2 acrocentric
22 14.7 acrocentric
X 60.6
Y 12.5

Sequence[edit]

There are two types of centromeres.[11] In regional centromeres, DNA sequences contribute to but do not define function. Regional centromeres contain large amounts of DNA and are often packaged into heterochromatin. In most eukaryotes, the centromere's DNA sequence consists of large arrays of repetitive DNA (e.g. satellite DNA) where the sequence within individual repeat elements is similar but not identical. In humans, the primary centromeric repeat unit is called α-satellite (or alphoid), although a number of other sequence types are found in this region.[12]

Point centromeres are smaller and more compact. DNA sequences are both necessary and sufficient to specify centromere identity and function in organisms with point centromeres. In budding yeasts, the centromere region is relatively small (about 125 bp DNA) and contains two highly conserved DNA sequences that serve as binding sites for essential kinetochore proteins.[12]

Inheritance[edit]

Since centromeric DNA sequence is not the key determinant of centromeric identity in metazoans, it is thought that epigenetic inheritance plays a major role in specifying the centromere.[13] The daughter chromosomes will assemble centromeres in the same place as the parent chromosome, independent of sequence. It has been proposed that histone H3 variant CENP-A (Centromere Protein A) is the epigenetic mark of the centromere.[14] The question arises whether there must be still some original way in which the centromere is specified, even if it is subsequently propagated epigenetically. If the centromere is inherited epigenetically from one generation to the next, the problem is pushed back to the origin of the first metazoans.

Structure[edit]

The centromeric DNA is normally in a heterochromatin state, which is essential for the recruitment of the cohesin complex that mediates sister chromatid cohesion after DNA replication as well as coordinating sister chromatid separation during anaphase. In this chromatin, the normal histone H3 is replaced with a centromere-specific variant, CENP-A in humans.[15] The presence of CENP-A is believed to be important for the assembly of the kinetochore on the centromere. CENP-C has been shown to localise almost exclusively to these regions of CENP-A associated chromatin. In human cells, the histones are found to be most enriched for H4K20me3 and H3K9me3[16] which are known heterochromatic modifications.

In the yeast Schizosaccharomyces pombe (and probably in other eukaryotes), the formation of centromeric heterochromatin is connected to RNAi.[17] In nematodes such as Caenorhabditis elegans, some plants, and the insect orders Lepidoptera and Hemiptera, chromosomes are "holocentric", indicating that there is not a primary site of microtubule attachments or a primary constriction, and a "diffuse" kinetochore assembles along the entire length of the chromosome.

Centromeric aberrations[edit]

In rare cases in humans, neocentromeres can form at new sites on the chromosome. There are currently over 90 known human neocentromeres identified on 20 different chromosomes.[18][19] The formation of a neocentromere must be coupled with the inactivation of the previous centromere, since chromosomes with two functional centromeres (Dicentric chromosome) will result in chromosome breakage during mitosis. In some unusual cases human neocentromeres have been observed to form spontaneously on fragmented chromosomes. Some of these new positions were originally euchromatic and lack alpha satellite DNA altogether.

Centromere proteins are also the autoantigenic target for some anti-nuclear antibodies, such as anti-centromere antibodies.

See also[edit]

References[edit]

  1. ^ Pollard, T.D. (2007). Cell Biology. Philadelphia: Saunders. pp. 200–203. ISBN 978-1-4160-2255-8. 
  2. ^ Pollard, TD (2007). Cell Biology. Philadelphia: Saunders. pp. 227–230. ISBN 978-1-4160-2255-8. 
  3. ^ a b Pluta, A.; A.M. Mackay, A.M. Ainsztein, I.G. Goldberg & W.C. Earnshaw. (1995). "The centromere: Hub of chromosomal activities.". Science 270 (5242): 1591–1594. doi:10.1126/science.270.5242.1591. PMID 7502067. 
  4. ^ "Sister chromatid cohesion". Genetics Home Reference. United States National Library of Medicine. May 15, 2011. 
  5. ^ "Chromosomes, Chromosome Anomalies". 
  6. ^ a b c http://www.amazon.com/Thompson-Genetics-Medicine-Sixth-Edition/dp/0721669026
  7. ^ Myka, J.L.; Lear, T.L.; Houck, M.L.; Ryder, O.A.; Bailey, E. (2003). "FISH analysis comparing genome organization in the domestic horse (Equus caballus) to that of the Mongolian wild horse (E. przewalskii)". Cytogenetic and Genome Research 102 (1–4): 222–5. doi:10.1159/000075753. PMID 14970707. 
  8. ^ Silver, Lee M. (1995). "Karyotypes, Chromosomes, and Translocations". Mouse Genetics: Concepts and Applications. Oxford: Oxford University Press. pp. 83–92. ISBN 978-0-19-507554-0. 
  9. ^ Chinwalla, Asif T.; Cook, Lisa L.; Delehaunty, Kimberly D.; Fewell, Ginger A.; Fulton, Lucinda A.; Fulton, Robert S.; Graves, Tina A.; Hillier, Ladeana W. et al. (2002). "Initial sequencing and comparative analysis of the mouse genome". Nature 420 (6915): 520–62. doi:10.1038/nature01262. PMID 12466850. 
  10. ^ Dernburg, A. F. (2001). "Here, There, and Everywhere: Kinetochore Function on Holocentric Chromosomes". The Journal of Cell Biology 153 (6): F33–8. doi:10.1083/jcb.153.6.F33. PMC 2192025. PMID 11402076. 
  11. ^ Pluta, A. F.; MacKay, A. M.; Ainsztein, A. M.; Goldberg, I. G.; Earnshaw, W. C. (1995). "The Centromere: Hub of Chromosomal Activities". Science 270 (5242): 1591–4. doi:10.1126/science.270.5242.1591. PMID 7502067. 
  12. ^ a b Mehta, G. D.; Agarwal, M.; Ghosh, S. K. (2010). "Centromere Identity: a challenge to be faced". Mol. Genet. Genomics 284 (2): 75–94. doi:10.1007/s00438-010-0553-4. PMID 20585957. 
  13. ^ Dalal, Yamini (2009). "Epigenetic specification of centromeres". Biochemistry and Cell Biology 87 (1): 273–82. doi:10.1139/O08-135. PMID 19234541. 
  14. ^ Bernad, Rafael; Sánchez, Patricia; Losada, Ana (2009). "Epigenetic specification of centromeres by CENP-A". Experimental Cell Research 315 (19): 3233–41. doi:10.1016/j.yexcr.2009.07.023. PMID 19660450. 
  15. ^ Chueh, A. C.; Wong, LH; Wong, N; Choo, KH (2004). "Variable and hierarchical size distribution of L1-retroelement-enriched CENP-A clusters within a functional human neocentromere". Human Molecular Genetics 14 (1): 85–93. doi:10.1093/hmg/ddi008. PMID 15537667. 
  16. ^ Rosenfeld, Jeffrey A; Wang, Zhibin; Schones, Dustin E; Zhao, Keji; Desalle, Rob; Zhang, Michael Q (2009). "Determination of enriched histone modifications in non-genic portions of the human genome". BMC Genomics 10: 143. doi:10.1186/1471-2164-10-143. PMC 2667539. PMID 19335899. 
  17. ^ Volpe, T. A.; Kidner, C; Hall, IM; Teng, G; Grewal, SI; Martienssen, RA (2002). "Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi". Science 297 (5588): 1833–7. doi:10.1126/science.1074973. PMID 12193640. 
  18. ^ Marshall, Owen J.; Chueh, Anderly C.; Wong, Lee H.; Choo, K.H. Andy (2008). "Neocentromeres: New Insights into Centromere Structure, Disease Development, and Karyotype Evolution". The American Journal of Human Genetics 82 (2): 261–82. doi:10.1016/j.ajhg.2007.11.009. 
  19. ^ Warburton, Peter E. (2004). "Chromosomal dynamics of human neocentromere formation". Chromosome Research 12 (6): 617–26. doi:10.1023/B:CHRO.0000036585.44138.4b. PMID 15289667. 

Further reading[edit]

  • Mehta, G. D.; Agarwal, M.; Ghosh, S. K. (2010). "Centromere Identity: a challenge to be faced". Mol. Genet. Genomics 284 (2): 75–94. doi:10.1007/s00438-010-0553-4. PMID 20585957. 
  • Lodish, Harvey; Berk, Arnold; Kaiser, Chris A.; Krieger, Monty; Scott, Matthew P.; Bretscher, Anthony; Ploegh, Hiddle; Matsudaira, Paul (2008). Molecular Cell Biology (6th ed.). New York: W.H. Freeman. ISBN 978-0-7167-7601-7. 
  • Nagaki, Kiyotaka; Cheng, Zhukuan; Ouyang, Shu; Talbert, Paul B; Kim, Mary; Jones, Kristine M; Henikoff, Steven; Buell, C Robin; Jiang, Jiming (2004). "Sequencing of a rice centromere uncovers active genes". Nature Genetics 36 (2): 138–45. doi:10.1038/ng1289. PMID 14716315. Lay summaryScience Daily (January 13, 2004). 
Wikipedia content is licensed under the GFDL License
Powered by YouTube
LEGAL
  • Mashpedia © 2014