Share

WIKIPEDIA ARTICLE

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

The dyne (symbol dyn, from Greek δύναμις, dynamis, meaning power, force) is a derived unit of force specified in the centimetre–gram–second (CGS) system of units, a predecessor of the modern SI.

History[edit]

The name dyne was first proposed as a C.G.S. unit of force in 1873 by a Committee of the British Association for the Advancement of Science.[1]

Definition[edit]

The dyne is defined as "the force required to accelerate a mass of one gram at a rate of one centimetre per second squared".[2] An equivalent definition for one dyne is "that force which, acting for one second, will produce unit change of velocity in a mass of one gram"[3]

One dyne is equal to 10 micronewtons, 10−5 N or to 10 nsn (nanosthenes) in the old metre–tonne–second system of units.

1 dyn = 1 g⋅cm/s2 = 10−5 kg⋅m/s2 = 10−5 N
1 N = 1 kg⋅m/s2 = 105 g⋅cm/s2 = 105 dyn
Units of force
newton
(SI unit)
dyne kilogram-force,
kilopond
pound-force poundal
1 N ≡ 1 kg⋅m/s2 = 105 dyn ≈ 0.10197 kp ≈ 0.22481 lbf ≈ 7.2330 pdl
1 dyn = 10−5 N ≡ 1 g⋅cm/s2 ≈ 1.0197 × 10−6 kp ≈ 2.2481 × 10−6 lbf ≈ 7.2330 × 10−5 pdl
1 kp = 9.80665 N = 980665 dyn gn ⋅ (1 kg) ≈ 2.2046 lbf ≈ 70.932 pdl
1 lbf ≈ 4.448222 N ≈ 444822 dyn ≈ 0.45359 kp gn ⋅ (1 lb) ≈ 32.174 pdl
1 pdl ≈ 0.138255 N ≈ 13825 dyn ≈ 0.014098 kp ≈ 0.031081 lbf ≡ 1 lb⋅ft/s2
The value of gn as used in the official definition of the kilogram-force is used here for all gravitational units.

Use[edit]

The dyne per centimetre is a unit traditionally used to measure surface tension. For example, the surface tension of distilled water is 71.99 dyn/cm at 25 °C (77 °F).[4] (In SI units this is 71.99×10−3 N/m or 71.99 mN/m.)

See also[edit]

References[edit]

  1. ^ Thomson, Sir W; Professor GC, Foster; Maxwell, Professor JC; Stoney, Mr GJ; Professor Flemming, Jenkin; Siemens, Dr; Bramwell, Mr FJ (September 1873). Everett, Professor, ed. First Report of the Committee for the Selection and Nomenclature of Dynamical and Electrical Units. Forty-third Meeting of the British Association for the Advancement of Science. Bradford: Johna Murray. p. 223. Retrieved 8 April 2012. 
  2. ^ Gyllenbok, Jan. "dyne". Encyclopaedia of Historical Metrology, Weights, and Measures, Volume 1. Birkhäuser. p. 90. ISBN 9783319575988. Retrieved 20 April 2018. 
  3. ^ "Dyne". The New Student's Reference Work. Chicago: Compton. 1914. 
  4. ^ Haynes, W.M.; Lide, D. R.; Bruno, T.J., eds. (2015). "Surface tension of common liquids". CRC Handbook of Chemistry and Physics (96nd ed.). CRC Press. p. 6-181. ISBN 9781482260977. 

Disclaimer

None of the audio/visual content is hosted on this site. All media is embedded from other sites such as GoogleVideo, Wikipedia, YouTube etc. Therefore, this site has no control over the copyright issues of the streaming media.

All issues concerning copyright violations should be aimed at the sites hosting the material. This site does not host any of the streaming media and the owner has not uploaded any of the material to the video hosting servers. Anyone can find the same content on Google Video or YouTube by themselves.

The owner of this site cannot know which documentaries are in public domain, which has been uploaded to e.g. YouTube by the owner and which has been uploaded without permission. The copyright owner must contact the source if he wants his material off the Internet completely.

Powered by YouTube
Wikipedia content is licensed under the GFDL and (CC) license