Share
VIDEOS 1 TO 50
Field Reversed Configurations (FRC) Formation Process
Field Reversed Configurations (FRC) Formation Process
Published: 2015/10/23
Channel: Tri Alpha Energy
NB tracer simulation in Reverse Field Configuration
NB tracer simulation in Reverse Field Configuration
Published: 2010/10/15
Channel: charlsonification
Nuclear Fusion: Clean Power for the Next Hundred Centuries
Nuclear Fusion: Clean Power for the Next Hundred Centuries
Published: 2009/09/10
Channel: GoogleTechTalks
Tri Alpha Energy reportedly makes important breakthrough in developing fusion reactor
Tri Alpha Energy reportedly makes important breakthrough in developing fusion reactor
Published: 2015/08/27
Channel: Star News
Irvine Field Reversed Configuration  Ion Density and Flow
Irvine Field Reversed Configuration Ion Density and Flow
Published: 2016/05/16
Channel: slide show me
Fusion-Enabled Pluto Orbiter and Lander - Princeton Satellite Systems, Inc.
Fusion-Enabled Pluto Orbiter and Lander - Princeton Satellite Systems, Inc.
Published: 2016/08/25
Channel: sietuuba
yanchyk fasttrack field reversed
yanchyk fasttrack field reversed
Published: 2013/06/24
Channel: FT4252
Reversed field pinch - Video Learning - WizScience.com
Reversed field pinch - Video Learning - WizScience.com
Published: 2015/09/10
Channel: Wiz Science™
ESC Throttle Programming for Holmes Hobbies and Castle Creations
ESC Throttle Programming for Holmes Hobbies and Castle Creations
Published: 2014/12/05
Channel: HolmesHobbies
SEM fusor with reversed polarities and magnetic mirror
SEM fusor with reversed polarities and magnetic mirror
Published: 2017/07/18
Channel: Rinze Joustra
Reversing Motor Rotation with Castle Creations Multirotor ESCs and Castle Link
Reversing Motor Rotation with Castle Creations Multirotor ESCs and Castle Link
Published: 2015/02/13
Channel: Dennis Baldwin
E-Flite Outrunner Shaft Reversal
E-Flite Outrunner Shaft Reversal
Published: 2013/06/24
Channel: PortlandSkyKnights
Document Configuration
Document Configuration
Published: 2009/08/30
Channel: Mariam Omran
Reversing the shaft on a motor
Reversing the shaft on a motor
Published: 2009/10/17
Channel: DrOne Solertron
Focus Fusion: The Fastest Route to Cheap, Clean Energy
Focus Fusion: The Fastest Route to Cheap, Clean Energy
Published: 2012/08/22
Channel: GoogleTalksArchive
NefariousCreations - Microwave  Generated Plasma
NefariousCreations - Microwave Generated Plasma
Published: 2009/11/05
Channel: NefariousCreations
Magnetic Field Observatory | Is the reversal speeding up?
Magnetic Field Observatory | Is the reversal speeding up?
Published: 2016/05/09
Channel: MrMBB333
E-Flight Opterra with Autopilot and Reverse Thrust
E-Flight Opterra with Autopilot and Reverse Thrust
Published: 2017/03/20
Channel: Stephen Gloor
What Happens When The Poles Flip? Understanding the Earth
What Happens When The Poles Flip? Understanding the Earth's Magnetic Field Reversal
Published: 2014/03/20
Channel: Fraser Cain
MOSFETs: High-Side vs Low-Side Switching
MOSFETs: High-Side vs Low-Side Switching
Published: 2015/06/27
Channel: Jonathan Currie
Ardupilot (APM) 2.5 - Setting up and testing your motor connections
Ardupilot (APM) 2.5 - Setting up and testing your motor connections
Published: 2013/07/07
Channel: Painless360
Controlling and Profitability Analysis Overview | SAP COPA Profitability Analysis
Controlling and Profitability Analysis Overview | SAP COPA Profitability Analysis
Published: 2016/06/16
Channel: ZaranTech
CPM Film tools DSLR Rig configured for Light weight tripod use. - DSLR Film NOOB
CPM Film tools DSLR Rig configured for Light weight tripod use. - DSLR Film NOOB
Published: 2010/12/27
Channel: onelonedork
How to program a Castle Sidewinder ESC
How to program a Castle Sidewinder ESC
Published: 2012/07/16
Channel: RedCatRcTech
Packing the Peak Design Everyday Backpack 20L Camera Battery Grip, 4 lenses etc Review
Packing the Peak Design Everyday Backpack 20L Camera Battery Grip, 4 lenses etc Review
Published: 2016/11/28
Channel: Adam Hicks
Green Motor Project Video 1 Truth About The Perendev Magnet Motor
Green Motor Project Video 1 Truth About The Perendev Magnet Motor
Published: 2009/03/22
Channel: magnetmotortv
Has a secretive California firm worked out how to harness fusion power?
Has a secretive California firm worked out how to harness fusion power?
Published: 2015/08/28
Channel: Megiston
Reverse Steering Servo Traxxas 2.4Ghz Radio
Reverse Steering Servo Traxxas 2.4Ghz Radio
Published: 2010/09/24
Channel: rcnightmare
MAGNET FIELD TESTER !
MAGNET FIELD TESTER !
Published: 2012/02/14
Channel: shazizz
Dip_640.mpg
Dip_640.mpg
Published: 2011/11/30
Channel: John Belcher
4 Poles Forming On The Sun May 2012
4 Poles Forming On The Sun May 2012
Published: 2012/04/29
Channel: netlethe
What is Inductance? The 3 Effects of Inductors - The 2-Minute Guru (s2e9)
What is Inductance? The 3 Effects of Inductors - The 2-Minute Guru (s2e9)
Published: 2017/06/13
Channel: Keysight Oscilloscopes
SAP FICO Profit Center Accounting & Configuration | Profit Center Master Data
SAP FICO Profit Center Accounting & Configuration | Profit Center Master Data
Published: 2016/06/16
Channel: ZaranTech
How To Configure Synaptics TouchPad Settings
How To Configure Synaptics TouchPad Settings
Published: 2015/07/16
Channel: CrazyUser
Recollision in strong laser field physics
Recollision in strong laser field physics
Published: 2011/02/26
Channel: François Mauger
SAP FICO Automatic Payment Configuration Steps | SAP FICO Training
SAP FICO Automatic Payment Configuration Steps | SAP FICO Training
Published: 2016/06/07
Channel: ZaranTech
BREAKING NEWS: Magnetic Field Shifts Much Faster Than Expected
BREAKING NEWS: Magnetic Field Shifts Much Faster Than Expected
Published: 2016/05/27
Channel: NoLinkNewsChannel
SAP FICO Training Live DEMO (Trainer Sagar)
SAP FICO Training Live DEMO (Trainer Sagar)
Published: 2013/06/18
Channel: ZaranTech
Dip_640 v2 8.6.4
Dip_640 v2 8.6.4
Published: 2013/02/06
Channel: John Belcher
Desalitech ReFlex Reverse Osmosis
Desalitech ReFlex Reverse Osmosis
Published: 2014/06/25
Channel: Desalitech, Inc.
1911 Full Length Guide Rod, Spring & Plug Replacement
1911 Full Length Guide Rod, Spring & Plug Replacement
Published: 2012/10/17
Channel: CaptainBerz
Lattice’s  MachXO3 FPGA, MachXO3LF & MachXO3L Features and Target Applications
Lattice’s MachXO3 FPGA, MachXO3LF & MachXO3L Features and Target Applications
Published: 2015/09/03
Channel: Future Electronics
CF6-80C2 Thrust Reverser Testing
CF6-80C2 Thrust Reverser Testing
Published: 2014/08/27
Channel: Avenir Aviation
PolarStar Fusion V2 Gen 3 - Installation & Firing
PolarStar Fusion V2 Gen 3 - Installation & Firing
Published: 2013/12/02
Channel: PatrolBaseAirsoft
B-17 Flying Fortress Virtual Tour - March Field Air Museum
B-17 Flying Fortress Virtual Tour - March Field Air Museum
Published: 2013/07/31
Channel: Urban Shark Productions
Try DJANGO TUTORIAL Series (v1.11) // Learn Django Version 1.11
Try DJANGO TUTORIAL Series (v1.11) // Learn Django Version 1.11
Published: 2017/07/06
Channel: CodingEntrepreneurs
What are Biased Transistor
What are Biased Transistor
Published: 2016/08/25
Channel: Ekeeda
MCITP 70-640: Operation Master Roles
MCITP 70-640: Operation Master Roles
Published: 2012/12/07
Channel: itfreetraining
Eachine Aurora 90 (FrSKY) BNF - Firmware Update - Part 2/3
Eachine Aurora 90 (FrSKY) BNF - Firmware Update - Part 2/3
Published: 2017/02/05
Channel: Fyre SG
Create/Define tolerance group for Vendor
Create/Define tolerance group for Vendor
Published: 2017/03/14
Channel: SAP CLASS
NEXT
GO TO RESULTS [51 .. 100]

WIKIPEDIA ARTICLE

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Field-reversed configuration: a toroidal electric current is induced inside a cylindrical plasma, making a poloidal magnetic field, reversed in respect to the direction of an externally applied magnetic field. The resultant high-beta axisymmetric compact toroid is self-confined.

A field-reversed configuration (FRC) is a device developed for magnetic confinement fusion research that confines a plasma on closed magnetic field lines without a central penetration.[1]

History[edit]

The LSX machine at Los Alamos, ~1990

The FRC was first observed in laboratories in the late 1950s during theta pinch experiments with a reversed background magnetic field.[2] The first studies of the effect started at the United States Naval Research Laboratory (NRL) in the 1960s. Considerable data has been collected since then, with over 600 published papers.[3] Almost all research was conducted during Project Sherwood at Los Alamos National Laboratory (LANL) from 1975 to 1990,[4] and during 18 years at the Redmond Plasma Physics Laboratory of the University of Washington,[5] with the large s experiment (LSX).[6] More recently some research has been done at the Air Force Research Laboratory (AFRL),[7] the Fusion Technology Institute (FTI) of the University of Wisconsin-Madison[8] and the University of California, Irvine.[9] Some private companies now theoretically and experimentally study FRCs in order to use this configuration in future fusion power plants they try to build, like General Fusion, Tri-Alpha Energy, Inc., and Helion Energy.[10]

The FRC is also considered for deep space exploration, not only as a possible nuclear energy source, but as means of accelerating a propellant to very high levels of specific impulse (Isp) for electrically powered spaceships and fusion rockets, with interest expressed by NASA[11][12][13][14][15][16] and the media.[17][18]

Comparison with a Spheromak[edit]

The Difference Between an FRC and a Spheromak

The difference between a spheromak and a field-reversed configuration is that a spheromak has an extra toroidal field. This toroidal field can run clockwise or counterclockwise to the spinning plasma direction [19].

Operation[edit]

One approach to producing fusion power is to confine the plasma with magnetic fields. This is most effective if the field lines do not penetrate solid surfaces but close on themselves into circles or toroidal surfaces. The mainline confinement concepts of tokamak and stellarator do this in a toroidal chamber, which allows a great deal of control over the magnetic configuration, but requires a very complex construction. The field-reversed configuration offers an alternative in that the field lines are closed, providing good confinement, but the chamber is cylindrical, allowing simpler, easier construction and maintenance.[20]

Field-reversed configurations and spheromaks are together known as compact toroids. Unlike the spheromak, where the strength of the toroidal magnetic field is similar to that of the poloidal field, the FRC has little to no toroidal field component and is confined solely by a poloidal field. The lack of a toroidal field means that the FRC has no magnetic helicity and that it has a high beta. The high beta makes the FRC attractive as a fusion reactor and uniquely suited to aneutronic fuels because of the low required magnetic field. Spheromaks have β ≈ 0.1 whereas a typical FRC has β ≈ 1.[21][22]

Formation[edit]

The Dimensions of an FRC, including the S-parameter.

In modern FRC experiments, the plasma current that reverses the magnetic field can be induced in a variety of ways.

When a field-reversed configuration is formed using the theta-pinch (or inductive electric field) method, a cylindrical coil first produces an axial magnetic field. Then the gas is pre-ionized, which "freezes in" the bias field from a magnetohydrodynamic standpoint, finally the axial field is reversed, hence "field-reversed configuration." At the ends, reconnection of the bias field and the main field occurs, producing closed field lines. The main field is raised further, compressing and heating the plasma and providing a vacuum field between the plasma and the wall.[23]

Neutral beams are known to drive current in Tokamaks[24] by directly injecting charged particles. FRCs can also be formed, sustained, and heated by application of neutral beams.[22][25] In such experiments, as above, a cylindrical coil produces a uniform axial magnetic field and gas is introduced and ionized, creating a background plasma. Neutral particles are then injected into the plasma. They ionize and the heavier, positively-charged particles form a current ring which reverses the magnetic field.

Spheromaks are FRC-like configurations with finite toroidal magnetic field. FRCs have been formed through the merging of spheromaks of opposite and canceling toroidal field.[26]

Rotating magnetic fields have also been used to drive current.[27] In such experiments, as above, gas is ionized and an axial magnetic field is produced. A rotating magnetic field is produced by external magnetic coils perpendicular to the axis of the machine, and the direction of this field is rotated about the axis. When the rotation frequency is between the ion and electron gyro-frequencies, the electrons in the plasma co-rotate with the magnetic field (are "dragged"), producing current and reversing the magnetic field. More recently, so-called odd parity rotating magnetic fields[28] have been used to preserve the closed topology of the FRC.

Single Particle Orbits[edit]

FRC particle trajectory in which a particle starts with cyclotron motion inside the null, transitions to betatron motion, and ends as cyclotron motion outside the null. This motion is in the midplane of the machine. Coils are above and below the figure.

FRCs contain an important and uncommon feature: a "magnetic null," or circular line on which the magnetic field is zero. This is necessarily the case, as inside the null the magnetic field points one direction and outside the null the magnetic field points the opposite direction. Particles far from the null trace closed cyclotron orbits as in other magnetic fusion geometries. Particles which cross the null, however, trace not cyclotron or circular orbits but betatron or figure-eight-like orbits,[29] as the orbit's curvature changes direction when it crosses the magnetic null.

Because the particles orbits are not cyclotron, models of plasma behavior based on cyclotron motion like Magnetohydrodynamics (MHD) are entirely inapplicable in the region around the null. The size of this region is related to the s-parameter,[30] or the ratio of the distance between the null and separatrix, and the thermal ion gyroradius. At high-s, most particles do not cross the null and this effect is negligible. At low-s, ~2, this effect dominates and the FRC is said to be "kinetic" rather than "MHD."

Plasma stability[edit]

At low s-parameter, most ions inside an FRC follow large betatron orbits (their average gyroradius is about half the size of the plasma) which are typical in accelerator physics rather than plasma physics. These FRCs are very stable because the plasma is not dominated by usual small gyroradius particles like other thermodynamic equilibrium or nonthermal plasmas. Its behavior is not described by classical magnetohydrodynamics, hence no Alfvén waves and almost no MHD instabilities despite their theoretical prediction,[31] and it avoids the typical "anomalous transport", i.e. processes in which excess loss of particles or energy occurs.[32][33][34]

As of 2000, several remaining instabilities are being studied:

  • The tilt and shift modes. Those instabilities can be mitigated by either including a passive stabilizing conductor, or by forming very oblate plasmas (i.e. very elongated plasmas),[35] or by creating a self-generated toroidal field.[36] The tilt mode has also been stabilized in FRC experiments by increasing the ion gyroradii.[30]
  • The magnetorotational instability. This mode causes a rotating elliptical distortion of the plasma boundary, and can destroy the FRC when the distorted plasma comes in contact with the confinement chamber.[37] Successful stabilization methods include the use of a quadrupole stabilizing field,[38][39] and the effects of a rotating magnetic field (RMF).[40][41]

Experiments[edit]

Selected field reverse experiments, pre-1988[3]
Year Device Location Device length Device diameter B-field Fill pressure Confinement Studied
Meter Meter Tesla Pascal Seconds
1959 - NRL 0.10 0.06 10.00 13.33 2.E-06 Annihilation
1961 Scylla I LANL 0.11 0.05 5.50 11.33 3.E-06 Annihilation
1962 Scylla III LANL 0.19 0.08 12.50 11.33 4.E-06 Rotation
1962 Thetatron Culham 0.21 0.05 8.60 13.33 3.E-06 Contraction
1962 Julich 0.10 0.04 6.00 30.66 1.E-06 Formation, tearing
1963 Culham 0.30 0.10 5.00 6.67 6.E-06 Contraction
1964 0-PII Garching 0.30 0.05 5.30 13.33 1.E-06 Tearing, contraction
1965 Pharos NRL 1.80 0.17 3.00 8.00 3.E-05 Confinement, rotation
1967 Centaur Culham 0.50 0.19 2.10 2.67 2.E-05 Confinement, rotation
1967 Julietta Julich 1.28 0.11 2.70 6.67 2.E-05 Tearing
1971 E-G Garching 0.70 0.11 2.80 6.67 3.E-05 Tearing, rotation
1975 BN Kurchatov 0.90 0.21 0.45 0.27 - 1.07 5.E-05 Formation
1979 TOR Kurchatov 1.50 0.30 1.00 0.27 - 0.67 1.E-04 Formation
1979 FRX-A LASL 1.00 0.25 0.60 0.53 - 0.93 3.E-05 Confinement
1981 FRX-B LANL 1.00 0.25 1.30 1.20 - 6.53 6.E-05 Confinement
1982 STP-L Nagoya 1.50 0.12 1.00 1.20 3.E-05 Rotation
1982 NUCTE Nihon 2.00 0.16 1.00 6.E-05 Confinement, rotation
1982 PIACE Osaka 1.00 0.15 1.40 6.E-05 Rotation
1983 FRX-C LANL 2.00 0.50 0.80 0.67 - 2.67 3.E-04 Confinement
1984 TRX-1 MSNW 1.00 0.25 1.00 0.67 -2.00 2.E-04 Formation, confinement
1984 CTTX Penn S U 0.50 0.12 0.40 13.33 4.E-05 Confinement
1985 HBQM U Wash 3.00 0.22 0.50 0.53 - 0.93 3.E-05 Formation
1986 OCT Osaka 0.60 0.22 1.00 1.E-04 Confinement
1986 TRX-2 STI 1.00 0.24 1.30 0.40 - 2.67 1.E-04 Formation, confinement
1987 CSS U Wash 1.00 0.45 0.30 1.33 - 8.00 6.E-05 Slow formation
1988 FRXC/LSM LANL 2.00 0.70 0.60 0.27 - 1.33 5.E-04 Formation, confinement
1990 LSX STI/MSNW 5.00 0.90 0.80 0.27 - 0.67 Stability, confinement
Selected field reverse configurations, 1988 - 2011[42]
Device Institution Device type Electron density Max ion or electron FRC diameter Length/diameter
10E19 / Meter^3 Temperature [eV] [Meter]
Spheromak-3 Tokyo University Merging spheromak 5.0 – 10.0 20 – 100 0.40 1.0
Spheromak-4 Tokyo University Merging spheromak 10 – 40 1.20 - 1.40 0.5 – 0.7
Compact Torus Exp-III Nihon University Theta-pinch 5.0 – 400.0 200 – 300 0.10 - 0.40 5.0 – 10.0
Field-Reversed Exp Liner Los Alamos Theta-pinch 1,500.0 – 2,500.0 200 – 700 0.03 - 0.05 7.0 – 10.0
FRC Injection Exp Osaka University Translation trapping 3.0 – 5.0 200 – 300 0.30 - 0.40 7.0 – 15.0
Swarthmore Spheromak Exp Swarthmore Merging spheromak 100 20 – 40 0.40 1.5
Magnetic Reconnection Exp Princeton (PPPL) Merging spheromak 5.0 – 20.0 30 1.00 0.3 – 0.7
Princeton field-reversed configuration experiment (PFRC) Princeton (PPPL) Rotating B-field 0.05 – 0.3 200 – 300 0.06
Translation Confinement Sustainment University of Washington Rotating B-field 0.1 – 2.5 25 – 50 0.70 - 0.74
Translation Confinement Sustainment-Upgrade University of Washington Rotating B-field 0.4 – 1.5 50 – 200 0.70 - 0.74 1.5 – 3.0
Plasma Liner Compression MSNW Translation trapping 0.20
Inductive Plasma Accelerator MSNW Merging collision 23.0 – 26.0 350 0.20
Inductive Plasma Accelerator-C MSNW Merging compression 300.0 1200 - 2000 0.2 10.0
Colorado FRC University of Colorado Merging spheromak
Irvine Field Reverse Configuration UC Irvine Coaxial source 150.0 10 0.60
C-2 Tri Alpha Energy, Inc. Merging collision 5.0 – 10.0 200 – 500 0.60 - 0.80 3.0 – 5.0
Prairie View Rotamak Prairie View A&M Rotating B-field 0.1 10-30 0.4 2

See also[edit]

External links[edit]

References[edit]

  1. ^ Freidberg, Jeffrey P. (2007). Plasma Physics and Fusion Energy. Cambridge University Press. ISBN 0-521-85107-6. 
  2. ^ Kolb, A.C.; Dobbie, C.B.; Griem, H.R. (1 July 1959). "Field mixing and associated neutron production in a plasma". Physical Review Letters. 3 (1): 5–7. Bibcode:1959PhRvL...3....5K. doi:10.1103/PhysRevLett.3.5. 
  3. ^ a b Tuszewski, M. (November 1988). "Field reversed configurations". Nuclear Fusion. 28 (11): 2033. doi:10.1088/0029-5515/28/11/008. 
  4. ^ McKenna, K.F.; Armstrong, W.T.; Barnes, D.C; Bartsch, R.R; Chrien, R.E.last6=Cochrane; Klingner, P.L.; Hugrass, W.W; Linford, R.K.; Rej, D.J.; Schwarzmeier, J.L.; Sherwood, E.G.; Siemon, R.E.; Spencer, R.L.; Tuszewski, M. (1985). "Field-reversed configuration research at Los Alamos". Nuclear Fusion. 25 (9): 1317. doi:10.1088/0029-5515/25/9/057.  |first6= missing |last6= in Authors list (help)
  5. ^ "Web page of the Redmond Plasma Physics Laboratory". Archived from the original on 2015-02-19. 
  6. ^ Hoffman, Alan L.; Carey, Larry L.; Crawford, Edward A.; Harding, Dennis G.; DeHart, Terence E.; McDonald, Kenneth F.; McNeil, John L.; Milroy, Richard D.; Slough, John T.; Maqueda, Ricardo; Wurden, Glen A. (March 1993). "The Large-s Field-Reversed Configuration Experiment". Fusion Science and Technology. American Nuclear Society. 23 (2): 185–207. OSTI 6514222. 
  7. ^ Kirtley, David; Brown, Daniel L.; Gallimore, Alec D.; Haas, James (June 2005). Details on an AFRL Field Reversed Configuration Plasma Device (PDF) (Technical report). Air Force Research Laboratory. 
  8. ^ "Web page of the Fusion Technology Institute, University of Wisconsin-Madison". 
  9. ^ Template:Ite journal
  10. ^ Poddar, Yash (11 March 2014). "Can Startups Make Nuclear Fusion Possible?". Stanford University. 
  11. ^ Wessel, F. J. (2000). "Colliding beam fusion reactor space propulsion system". AIP Conference Proceedings. 504. p. 1425. ISBN 156396919X. doi:10.1063/1.1290961. 
  12. ^ Cheung, A. (2004). "Colliding Beam Fusion Reactor Space Propulsion System". AIP Conference Proceedings. 699. p. 354. doi:10.1063/1.1649593. 
  13. ^ Slough, John T. (28 November 2000). Propagating Magnetic Wave Plasma Accelerator (PMWAC) for Deep Space Exploration (PDF) (Technical report). MSNW LCC and NASA Institute for Advanced Concepts. 
  14. ^ Slough, John; Pancotti, Anthony; Pfaff, Michael; Pihl, Christopher; Votroubek, George (November 2012). The Fusion Driven Rocket (PDF). NIAC 2012. Hampton, VA: NASA Innovative Advanced Concepts. 
  15. ^ Pancotti, A.; Slough, J.; Kirtley, D.; Pfaff, M.; Pihl, C.; Votroubek, G. (2012). "Mission Design Architecture for the Fusion Driven Rocket". 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (PDF). ISBN 978-1-60086-935-8. doi:10.2514/6.2012-4113. 
  16. ^ Slough, John; Pancotti, Anthony; Kirtley, David; Votroubek, George (6–10 October 2013). Electromagnetically Driven Fusion Propulsion (PDF). 33rd International Electric Propulsion Conference (IEPC-2013). Washington, D.C.: George Washington University. 
  17. ^ "Nuclear Fusion Rocket Could Reach Mars in 30 Days". Space.com. 10 April 2013. 
  18. ^ Brian Heather (12 September 2013). "Professor John Slough on how nuclear power could get us to Mars in 30 days". Engadget. 
  19. ^ Dolan, Thomas. Magnetic Fusion Technology. Vol. 2. New York City: Springer, 2012. Print.
  20. ^ Ryzhkov, Sergei V. (2002). "Features of Formation, Confinement and Stability of the Field Reversed Configuration" (PDF). Problems of Atomic Science and Technology. Plasma Physics. 7 (4): 73–75. ISSN 1682-9344. 
  21. ^ Ono, Y (1999). "New relaxation of merging spheromaks to a field reversed configuration". Nuclear Fusion. 39 (11Y): 2001–2008. Bibcode:1999NucFu..39.2001O. doi:10.1088/0029-5515/39/11Y/346. 
  22. ^ a b Momita Okamoto Nomura (1987). "Advanced Fuels in a Field-Reversed Configuration". Fusion Science and Technology. Retrieved 2016-01-05. 
  23. ^ Slough, J (2011). "Creation of a high-temperature plasma through merging and compression of supersonic field reversed configuration plasmoids". Nuclear Fusion. 51 (5): 053008. Bibcode:2011NucFu..51e3008S. doi:10.1088/0029-5515/51/5/053008. 
  24. ^ Taguchi, M (1992-01-01). "Approximate expression for beam driven current in tokamak plasmas". Nuclear Fusion. 32 (1): 143–150. Bibcode:1992NucFu..32..143T. doi:10.1088/0029-5515/32/1/i12. 
  25. ^ Rostoker, N.; Binderbauer, M.; Monkhorst, H. J. (1996-01-01). "Fusion reactors based on colliding beams in a field reversed configuration plasma". 
  26. ^ Ji, H.; Belova, E.; Gerhardt, S. P.; Yamada, M. (2006-12-01). "Recent Advances in the SPIRIT (Self-organized Plasma with Induction, Reconnection, and Injection Techniques) Concept". Journal of Fusion Energy. 26 (1–2): 93–97. Bibcode:2007JFuE...26...93J. ISSN 0164-0313. doi:10.1007/s10894-006-9043-4. 
  27. ^ Jones, Ieuan R. (1999-05-01). "A review of rotating magnetic field current drive and the operation of the rotamak as a field-reversed configuration (Rotamak-FRC) and a spherical tokamak (Rotamak-ST)". Physics of Plasmas (1994-present). 6 (5): 1950–1957. Bibcode:1999PhPl....6.1950J. ISSN 1070-664X. doi:10.1063/1.873452. 
  28. ^ Glasser, A. H.; Cohen, S. A. (2002-05-01). "Ion and electron acceleration in the field-reversed configuration with an odd-parity rotating magnetic field". Physics of Plasmas (1994-present). 9 (5): 2093–2102. Bibcode:2002PhPl....9.2093G. ISSN 1070-664X. doi:10.1063/1.1459456. 
  29. ^ Wang, M. Y.; Miley, G. H. (1979-01-01). "Particle orbits in field-reversed mirrors". Nuclear Fusion. 19 (1): 39. ISSN 0029-5515. doi:10.1088/0029-5515/19/1/005. 
  30. ^ a b Slough, J. T.; Hoffman, A. L. (1988). "Observation of tilt stability of field reversed configurations at large s". Nuclear Fusion. 28 (6): 1121. doi:10.1088/0029-5515/28/6/016. 
  31. ^ Asai, T.; Takahashi, T. (2012). "MHD Activity in an Extremely High-Beta Compact Toroid". Topics in Magnetohydrodynamics (PDF). ISBN 978-953-51-0211-3. doi:10.5772/37375. 
  32. ^ Rostoker, N.; Wessel, F.J.; Rahman, H.U.; Maglich, B.C.; Spivey, B. (22 March 1993). "Magnetic Fusion with High Energy Self-Colliding Ion Beams" (PDF). Physical Review Letters. American Physical Society. 70 (1818): 1818–1821. Bibcode:1993PhRvL..70.1818R. PMID 10053394. doi:10.1103/PhysRevLett.70.1818. Archived from the original on 20 December 2005. 
  33. ^ Binderbauer, M.W.; Rostoker, N. (December 1996). "Turbulent Transport in Magnetic Confinement: How to Avoid it". Journal of Plasma Physics. Cambridge University Press. 56 (3): 451–465. Bibcode:1996JPlPh..56..451B. doi:10.1017/S0022377800019413. Archived (PDF) from the original on 28 December 2005. 
  34. ^ Rostoker, N.; Binderbauer, M. W.; Wessel, F. J.; Monkhorst, H. J. Colliding Beam Fusion Reactor (PDF). Invited Paper, Special Session on Advanced Fuels APS-DPP. American Physical Society. Archived from the original (PDF) on December 20, 2005. 
  35. ^ Gerhardt, S. P.; Belova, E.; Inomoto, M.; Yamada, M.; Ji, H.; Ren, Y.; Kuritsyn, A. (2006). "Equilibrium and stability studies of oblate field-reversed configurations in the Magnetic Reconnection Experiment" (PDF). Physics of Plasmas. 13 (11): 112508. Bibcode:2006PhPl...13k2508G. doi:10.1063/1.2360912. 
  36. ^ Omelchenko, Yu. A. (27–29 March 2000). Stabilization of the FRC Tilt Mode by a Self-Generated Toroidal Field (PDF). Sherwood 2000 International Fusion/Plasma Theory Conference. UCLA, Los Angeles, California: General Atomics Fusion Energy Research. Archived from the original (PDF) on 2014-12-16. 
  37. ^ Tuszewski, M. (1984). "Experimental study of the equilibrium of field-reversed configurations". Plasma Physics and Controlled Fusion. 26 (8): 991. Bibcode:1984PPCF...26..991T. doi:10.1088/0741-3335/26/8/004. 
  38. ^ Ohi, S.; Minato, T.; Kawakami, Y.; Tanjyo, M.; Okada, S.; Ito, Y.; Kako, M.; Gotô, S.; Ishimura, T.; Itô, H. (1983). "Quadrupole Stabilization of the n=2 Rotational Instability of a Field-Reversed Theta-Pinch Plasma". Physical Review Letters. 51 (12): 1042. Bibcode:1983PhRvL..51.1042O. doi:10.1103/PhysRevLett.51.1042. 
  39. ^ Hoffman, A. L. (1983). "Suppression of the n=2 rotational instability in field-reversed configurations". Physics of Fluids. 26 (6): 1626. Bibcode:1983PhFl...26.1626H. doi:10.1063/1.864298. 
  40. ^ Guo, H.; Hoffman, A.; Milroy, R.; Miller, K.; Votroubek, G. (2005). "Stabilization of Interchange Modes by Rotating Magnetic Fields". Physical Review Letters. 94 (18): 185001. Bibcode:2005PhRvL..94r5001G. PMID 15904379. doi:10.1103/PhysRevLett.94.185001. 
  41. ^ Slough, J.; Miller, K. (2000). "Enhanced Confinement and Stability of a Field-Reversed Configuration with Rotating Magnetic Field Current Drive" (PDF). Physical Review Letters. 85 (7): 1444. Bibcode:2000PhRvL..85.1444S. PMID 10970525. doi:10.1103/PhysRevLett.85.1444. Archived from the original (PDF) on 2012-10-17. 
  42. ^ "Review of field-reverse configurations" Loren C. Steinhauser, Physics of Plasma, 2011

Disclaimer

None of the audio/visual content is hosted on this site. All media is embedded from other sites such as GoogleVideo, Wikipedia, YouTube etc. Therefore, this site has no control over the copyright issues of the streaming media.

All issues concerning copyright violations should be aimed at the sites hosting the material. This site does not host any of the streaming media and the owner has not uploaded any of the material to the video hosting servers. Anyone can find the same content on Google Video or YouTube by themselves.

The owner of this site cannot know which documentaries are in public domain, which has been uploaded to e.g. YouTube by the owner and which has been uploaded without permission. The copyright owner must contact the source if he wants his material off the Internet completely.

Powered by YouTube
Wikipedia content is licensed under the GFDL and (CC) license