In mathematics, computer science, and linguistics, a formal language is a set of strings of symbols together with a set of rules that are specific to it.
The alphabet of a formal language is the set of symbols, letters, or tokens from which the strings of the language may be formed.^{[1]} The strings formed from this alphabet are called words, and the words that belong to a particular formal language are sometimes called wellformed words or wellformed formulas. A formal language is often defined by means of a formal grammar such as a regular grammar or contextfree grammar, also called its formation rule.
The field of formal language theory studies primarily the purely syntactical aspects of such languages—that is, their internal structural patterns. Formal language theory sprang out of linguistics, as a way of understanding the syntactic regularities of natural languages. In computer science, formal languages are used among others as the basis for defining the grammar of programming languages and formalized versions of subsets of natural languages in which the words of the language represent concepts that are associated with particular meanings or semantics. In computational complexity theory, decision problems are typically defined as formal languages, and complexity classes are defined as the sets of the formal languages that can be parsed by machines with limited computational power. In logic and the foundations of mathematics, formal languages are used to represent the syntax of axiomatic systems, and mathematical formalism is the philosophy that all of mathematics can be reduced to the syntactic manipulation of formal languages in this way.
This section needs expansion. You can help by adding to it. (April 2011)

The first formal language is thought to be the one used by Gottlob Frege in his Begriffsschrift (1879), literally meaning "concept writing", and which Frege described as a "formal language of pure thought."^{[2]}
Axel Thue's early semiThue system, which can be used for rewriting strings, was influential on formal grammars.
An alphabet, in the context of formal languages, can be any set, although it often makes sense to use an alphabet in the usual sense of the word, or more generally a character set such as ASCII or Unicode. The elements of an alphabet are called its letters. An alphabet may contain an infinite number of elements;^{[3]} however, most definitions in formal language theory specify alphabets with a finite number of elements, and most results apply only to them.
A word over an alphabet can be any finite sequence (i.e., string) of letters. The set of all words over an alphabet Σ is usually denoted by Σ^{*} (using the Kleene star). The length of a word is the number of letters it is composed of. For any alphabet, there is only one word of length 0, the empty word, which is often denoted by e, ε, λ or even Λ. By concatenation one can combine two words to form a new word, whose length is the sum of the lengths of the original words. The result of concatenating a word with the empty word is the original word.
In some applications, especially in logic, the alphabet is also known as the vocabulary and words are known as formulas or sentences; this breaks the letter/word metaphor and replaces it by a word/sentence metaphor.
A formal language L over an alphabet Σ is a subset of Σ^{*}, that is, a set of words over that alphabet. Sometimes the sets of words are grouped into expressions, whereas rules and constraints may be formulated for the creation of 'wellformed expressions'.
In computer science and mathematics, which do not usually deal with natural languages, the adjective "formal" is often omitted as redundant.
While formal language theory usually concerns itself with formal languages that are described by some syntactical rules, the actual definition of the concept "formal language" is only as above: a (possibly infinite) set of finitelength strings composed from a given alphabet, no more no less. In practice, there are many languages that can be described by rules, such as regular languages or contextfree languages. The notion of a formal grammar may be closer to the intuitive concept of a "language," one described by syntactic rules. By an abuse of the definition, a particular formal language is often thought of as being equipped with a formal grammar that describes it.
The following rules describe a formal language L over the alphabet Σ = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, = }:
Under these rules, the string "23+4=555" is in L, but the string "=234=+" is not. This formal language expresses natural numbers, wellformed additions, and wellformed addition equalities, but it expresses only what they look like (their syntax), not what they mean (semantics). For instance, nowhere in these rules is there any indication that "0" means the number zero, or that "+" means addition.
For finite languages, one can explicitly enumerate all wellformed words. For example, we can describe a language L as just L = {"a", "b", "ab", "cba"}. The degenerate case of this construction is the empty language, which contains no words at all (L = ∅).
However, even over a finite (nonempty) alphabet such as Σ = {a, b} there are an infinite number of finitelength words that can potentially be expressed: "a", "abb", "ababba", "aaababbbbaab", …. Therefore, formal languages are typically infinite, and describing an infinite formal language is not as simple as writing L = {"a", "b", "ab", "cba"}. Here are some examples of formal languages:
Formal languages are used as tools in multiple disciplines. However, formal language theory rarely concerns itself with particular languages (except as examples), but is mainly concerned with the study of various types of formalisms to describe languages. For instance, a language can be given as
Typical questions asked about such formalisms include:
Surprisingly often, the answer to these decision problems is "it cannot be done at all", or "it is extremely expensive" (with a characterization of how expensive). Therefore, formal language theory is a major application area of computability theory and complexity theory. Formal languages may be classified in the Chomsky hierarchy based on the expressive power of their generative grammar as well as the complexity of their recognizing automaton. Contextfree grammars and regular grammars provide a good compromise between expressivity and ease of parsing, and are widely used in practical applications.
Certain operations on languages are common. This includes the standard set operations, such as union, intersection, and complement. Another class of operation is the elementwise application of string operations.
Examples: suppose L_{1} and L_{2} are languages over some common alphabet.
Such string operations are used to investigate closure properties of classes of languages. A class of languages is closed under a particular operation when the operation, applied to languages in the class, always produces a language in the same class again. For instance, the contextfree languages are known to be closed under union, concatenation, and intersection with regular languages, but not closed under intersection or complement. The theory of trios and abstract families of languages studies the most common closure properties of language families in their own right.^{[4]}
Operation  Regular  DCFL  CFL  IND  CSL  recursive  RE  

Union  Yes  No  Yes  Yes  Yes  Yes  Yes  
Intersection  Yes  No  No  No  Yes  Yes  Yes  
Complement  Yes  Yes  No  No  Yes  Yes  No  
Concatenation  Yes  No  Yes  Yes  Yes  Yes  Yes  
Kleene star  Yes  No  Yes  Yes  Yes  Yes  Yes  
Homomorphism  Yes  No  Yes  Yes  No  No  Yes  
efree Homomorphism  Yes  No  Yes  Yes  Yes  Yes  Yes  
Substitution  Yes  No  Yes  Yes  Yes  No  Yes  
Inverse Homomorphism  Yes  Yes  Yes  Yes  Yes  Yes  Yes  
Reverse  Yes  No  Yes  Yes  Yes  Yes  Yes  
Intersection with a regular language  Yes  Yes  Yes  Yes  Yes  Yes  Yes 
A compiler usually has two distinct components. A lexical analyzer, generated by a tool like lex
, identifies the tokens of the programming language grammar, e.g. identifiers or keywords, which are themselves expressed in a simpler formal language, usually by means of regular expressions. At the most basic conceptual level, a parser, usually generated by a parser generator like yacc
, attempts to decide if the source program is valid, that is if it belongs to the programming language for which the compiler was built.
Of course, compilers do more than just parse the source code – they usually translate it into some executable format. Because of this, a parser usually outputs more than a yes/no answer, typically an abstract syntax tree. This is used by subsequent stages of the compiler to eventually generate an executable containing machine code that runs directly on the hardware, or some intermediate code that requires a virtual machine to execute.
In mathematical logic, a formal theory is a set of sentences expressed in a formal language.
A formal system (also called a logical calculus, or a logical system) consists of a formal language together with a deductive apparatus (also called a deductive system). The deductive apparatus may consist of a set of transformation rules, which may be interpreted as valid rules of inference, or a set of axioms, or have both. A formal system is used to derive one expression from one or more other expressions. Although a formal language can be identified with its formulas, a formal system cannot be likewise identified by its theorems. Two formal systems and may have all the same theorems and yet differ in some significant prooftheoretic way (a formula A may be a syntactic consequence of a formula B in one but not another for instance).
A formal proof or derivation is a finite sequence of wellformed formulas (which may be interpreted as sentences, or propositions) each of which is an axiom or follows from the preceding formulas in the sequence by a rule of inference. The last sentence in the sequence is a theorem of a formal system. Formal proofs are useful because their theorems can be interpreted as true propositions.
Formal languages are entirely syntactic in nature but may be given semantics that give meaning to the elements of the language. For instance, in mathematical logic, the set of possible formulas of a particular logic is a formal language, and an interpretation assigns a meaning to each of the formulas—usually, a truth value.
The study of interpretations of formal languages is called formal semantics. In mathematical logic, this is often done in terms of model theory. In model theory, the terms that occur in a formula are interpreted as objects within mathematical structures, and fixed compositional interpretation rules determine how the truth value of the formula can be derived from the interpretation of its terms; a model for a formula is an interpretation of terms such that the formula becomes true.
An alphabet is a finite set.
Wikimedia Commons has media related to Formal languages. 
None of the audio/visual content is hosted on this site. All media is embedded from other sites such as GoogleVideo, Wikipedia, YouTube etc. Therefore, this site has no control over the copyright issues of the streaming media.
All issues concerning copyright violations should be aimed at the sites hosting the material. This site does not host any of the streaming media and the owner has not uploaded any of the material to the video hosting servers. Anyone can find the same content on Google Video or YouTube by themselves.
The owner of this site cannot know which documentaries are in public domain, which has been uploaded to e.g. YouTube by the owner and which has been uploaded without permission. The copyright owner must contact the source if he wants his material off the Internet completely.