Play Video
1
2012. Molecular Dynamics simulation of GTPase interfaces of FtsZ tetramer
2012. Molecular Dynamics simulation of GTPase interfaces of FtsZ tetramer
::2013/12/02::
Play Video
2
FtsZ placement in Nucleoid Free Bacteria
FtsZ placement in Nucleoid Free Bacteria
::2014/03/31::
Play Video
3
Cell Division and the Cell Cycle
Cell Division and the Cell Cycle
::2010/02/13::
Play Video
4
Lucy Shapiro (Stanford Univ) Part 1: Dynamics of the Bacterial Chromosome
Lucy Shapiro (Stanford Univ) Part 1: Dynamics of the Bacterial Chromosome
::2010/06/03::
Play Video
5
FINAL FtsZ Animation
FINAL FtsZ Animation
::2013/11/11::
Play Video
6
Cherokee Flight  C-FTSZ
Cherokee Flight C-FTSZ
::2013/02/10::
Play Video
7
C-FTSZ CHEROKEE FLIGHT
C-FTSZ CHEROKEE FLIGHT
::2013/02/10::
Play Video
8
FtsZ Polymerization Assays: Simple Protocols and Considerations
FtsZ Polymerization Assays: Simple Protocols and Considerations
::2014/02/27::
Play Video
9
C-FTSZ FINAL CYOO GUSTING 25kts
C-FTSZ FINAL CYOO GUSTING 25kts
::2013/02/10::
Play Video
10
Caulo FtsZ depletion A22
Caulo FtsZ depletion A22
::2013/06/27::
Play Video
11
Ftsz Komárom!
Ftsz Komárom!
::2012/10/01::
Play Video
12
Endrefalva Olympus FTSZ. 2005
Endrefalva Olympus FTSZ. 2005
::2009/02/12::
Play Video
13
gorby ftsz 2010
gorby ftsz 2010
::2010/10/05::
Play Video
14
High throughput 3D super-resolution microscopy of bacterial cell division
High throughput 3D super-resolution microscopy of bacterial cell division
::2014/03/12::
Play Video
15
Colonna Sonora-Apocalypse Now-La Cavalcata Delle Valchirie
Colonna Sonora-Apocalypse Now-La Cavalcata Delle Valchirie
::2013/10/31::
Play Video
16
Katy Perry Grabs herself On Stage LMFAO!
Katy Perry Grabs herself On Stage LMFAO!
::2014/06/25::
Play Video
17
HH8 Bai 14
HH8 Bai 14
::2014/07/09::
Play Video
18
RACHEL DAWN RENAUDIN at RAW:Pittsburgh Translations 09/05/2013
RACHEL DAWN RENAUDIN at RAW:Pittsburgh Translations 09/05/2013
::2013/09/30::
Play Video
19
St pete street ball
St pete street ball
::2014/01/04::
Play Video
20
OOPS: President Obama Blames Bad Intelligence Behind ISIS Underestimation
OOPS: President Obama Blames Bad Intelligence Behind ISIS Underestimation
::2014/08/09::
Play Video
21
Meegamann trailer
Meegamann trailer
::2014/07/18::
Play Video
22
Media-_Shotz
Media-_Shotz's fl
::2014/04/18::
Play Video
23
انا؟؟؟؟؟
انا؟؟؟؟؟
::2012/08/21::
Play Video
24
Asela  Moon La Luna - Happy Birthday
Asela Moon La Luna - Happy Birthday
::2013/05/28::
Play Video
25
The Book of Unwritten Tales - Walkthrough Part 37/66 [HD 1080p][Blind]
The Book of Unwritten Tales - Walkthrough Part 37/66 [HD 1080p][Blind]
::2013/02/12::
Play Video
26
Hurricane Irene Flood Relief Outreach Clinic Phoenicia, NY - 010
Hurricane Irene Flood Relief Outreach Clinic Phoenicia, NY - 010
::2011/10/28::
Play Video
27
high times(SALVIA REMIX)
high times(SALVIA REMIX)
::2012/05/20::
Play Video
28
RCA Bag WE-Do Studio
RCA Bag WE-Do Studio
::2011/04/25::
Play Video
29
Unbreakable   Jhaye allis
Unbreakable Jhaye allis
::2012/08/14::
Play Video
30
UFF 021
UFF 021
::2012/11/21::
Play Video
31
Rebellion- Ziipro
Rebellion- Ziipro
::2011/12/20::
Play Video
32
Kafele & Guitaro (The HomeGrown Project
Kafele & Guitaro (The HomeGrown Project
::2009/05/11::
Play Video
33
Турция 2010, Канаклы, San Marin   вечером у бассейна
Турция 2010, Канаклы, San Marin вечером у бассейна
::2011/03/03::
Play Video
34
3D model of the bacterial divisome by LifeExplorer
3D model of the bacterial divisome by LifeExplorer
::2008/10/13::
Play Video
35
Jersz World..Feat Fresh - Beamer Benz And Bentley Freestyle
Jersz World..Feat Fresh - Beamer Benz And Bentley Freestyle
::2011/09/14::
Play Video
36
November 28, 2012 15:58
November 28, 2012 15:58
::2013/07/01::
Play Video
37
ピグライフ
ピグライフ
::2011/06/25::
Play Video
38
My Edited Video
My Edited Video
::2012/07/07::
Play Video
39
Max in the morning
Max in the morning
::2012/12/08::
Play Video
40
Goss up 4
Goss up 4
::2011/10/06::
Play Video
41
OCEAN REEF at rec_20111017225401.asf
OCEAN REEF at rec_20111017225401.asf
::2011/10/18::
Play Video
42
Cherokee 2
Cherokee 2
::2013/02/10::
Play Video
43
Rapide 13/04
Rapide 13/04
::2010/04/19::
Play Video
44
29-Piece Drill Set - Westward Product Review Video
29-Piece Drill Set - Westward Product Review Video
::2012/12/31::
Play Video
45
Evan and Natalie
Evan and Natalie
::2008/04/29::
Play Video
46
GS Aquarium2
GS Aquarium2
::2010/12/03::
Play Video
47
Caulo A325P
Caulo A325P
::2013/06/27::
Play Video
48
Búsqueda de nuevos antibióticos
Búsqueda de nuevos antibióticos
::2012/06/18::
Play Video
49
Chippie monster
Chippie monster
::2007/03/09::
Play Video
50
gorby.mp4
gorby.mp4
::2011/08/03::
NEXT >>
RESULTS [51 .. 101]
From Wikipedia, the free encyclopedia
Jump to: navigation, search
Molecular Structure of FtsZ

FtsZ is a protein encoded by the ftsZ gene that assembles into a ring at the future site of the septum of bacterial cell division. This is a prokaryotic homologue to the eukaryotic protein tubulin. FtsZ has been named after "Filamenting temperature-sensitive mutant Z". The hypothesis was that cell division mutants of E. coli would grow as filaments due to the inability of the daughter cells to separate from one another.

History[edit]

Discovery of the bacterial cytoskeleton is fairly recent. FtsZ was the first protein of the prokaryotic cytoskeleton to be identified.

The gene was discovered in the 1950s by Y. Hirota (ja:廣田幸敬) and his colleagues in a screen for bacterial cell division mutants.[1] In 1991 it was shown by Erfei Bi and Joseph Lutkenhaus that FtsZ assembled into the Z-ring.

Nuclear-encoded FtsZ in the moss Physcomitrella patens is required for chloroplast division and was the first identified protein essential for organelle division.[2]

Function[edit]

During cell division, FtsZ is the first protein to move to the division site, and is essential for recruiting other proteins that produce a new cell wall between the dividing cells. FtsZ's role in cell division is analogous to that of actin in eukaryotic cell division, but, unlike the actin-myosin ring in eukaryotes, FtsZ has no known motor protein associated with it. The origin of the cytokinetic force, thus, remains unclear, but it is believed that the localized synthesis of new cell wall produces at least part of this force. In liposomes Osawa (2009) showed FtsZ is capable of exerting a contractile force with no other proteins present.[3]

Erickson (2009) proposed how the roles of tubulin-like proteins and actin-like proteins in cell division became reversed in an evolutionary mystery.[4] The use of the FtsZ ring in dividing chloroplasts and some mitochondria further establishes their prokaryotic ancestry. It is interesting to note that L-form bacteria that lack a cell wall do not require FtsZ for division, which implies that bacteria may have retained components of an ancestral mode of cell division.[5]

Much is known about the dynamic polymerization activities of tubulin and microtubules, but little is known about these activities in FtsZ. While it is known that single-stranded tubulin protofilaments form into 13 stranded microtubules, the multistranded structure of the FtsZ-containing Z-ring is not known. It is only speculated that the structure consists of overlapping protofilaments.

Recently, proteins similar to tubulin and FtsZ have been discovered in large plasmids found in Bacillus species. They are believed to function as components of segrosomes, which are multiprotein complexes that partition chromosomes/plasmids in bacteria. The plasmid homologs of tubulin/FtsZ seem to have conserved the ability to polymerize into filaments.

The Contractile Ring[edit]

FtsZ has the ability to bind to GTP and also exhibits a GTPase domain that allows it to hydrolyze GTP to GDP and a phosphate group. In vivo, FtsZ forms filaments with a repeating arrangement of subunits, all arranged head-to-tail.[6] These filaments form a ring around the longitudinal midpoint, or septum, of the cell. This ring is called the Z-ring.

The GTP hydrolyzing activity of the protein is not essential to the formation of filaments or division. Mutants lacking the GTPase domain form twisted and disordered septa.[7] These cells with irregular septa can still divide, although abnormally. It is unclear as to whether FtsZ actually provides the physical force that results in division or serves as a marker for other proteins to execute division.

The Z-ring forms from smaller subunits of FtsZ filaments. These filaments may pull on each other and tighten to divide the cell

If FtsZ does provide force that divides the cell, it may do so through the relative movement of subunits. Computer models and in vivo measurements suggest that single FtsZ filaments cannot sustain a length more than 30 subunits long. In this model, FtsZ scission force comes from the relative lateral movement of subunits.[8] Lines of FtsZ would line up together parallel and pull on each other creating a "cord" of many strings that tightens itself.

In other models, FtsZ does not provide the contractile force but provides the cell a spatial scaffold for other proteins to execute the division of the cell. This is akin to the creating of a temporary structure by construction workers to access hard-to-reach places of a building. The temporary structure allows unfettered access and ensures that the workers can reach all places. If the temporary structure is not correctly built, the workers will not be able to reach certain places, and the building will be deficient.

The scaffold theory is supported by information that shows that the formation of the ring and localization to the membrane requires the concerted action of a number of accessory proteins. ZipA or the actin homologue FtsA permit initial FtsZ localization to the membrane.[9] Following localization to the membrane, division proteins of the Fts family are recruited for ring assembly.[10] Many of these proteins, such as FtsW, FtsK, and FtsQ are involved in stabilization of the Z ring and may also be active participants in the scission event. The timing of Z-ring formation suggests the possibility of a spatial or temporal signal that permits the formation of FtsZ filaments. There currently exist several models and mechanisms that regulate Z-ring formation.One of the model of Z-ring formation was proposed by Rashid, Aijaz and Sing, Perminder. Critical Concentration Gradient Model of Bacterial Cell Division. Available from Nature Precedings <http://hdl.handle.net/10101/npre.2010.4659.1> (2010)<ref.According to this model positive and negative regulators of FtsZ assembly form a gradient inside the bacterial cell. The gradient is such that critical concentration of FtsZ required for FtsZ assembly is minimum at medial position of cell,hence Z-ring and ultimately divisome complex is formed at middle of cell.

Septal Localization and Intracellular Signaling[edit]

The formation of the Z-ring closely coincides with cellular processes associated with replication. Z-ring formation coincides with the termination of genome replication in E. coli and 70% of chromosomal replication in B. subtilis.[11]The timing of Z-ring formation suggests the possibility of a spatial or temporal signal that permits the formation of FtsZ filaments. There currently exist several models and mechanisms that regulate Z-ring formation.One of the model of Z-ring formation was proposed by Rashid, Aijaz and Sing, Perminder. Critical Concentration Gradient Model of Bacterial Cell Division. Available from Nature Precedings <http://hdl.handle.net/10101/npre.2010.4659.1> (2010) According to this model positive and negative regulators of FtsZ assembly form a gradient inside the bacterial cell. The gradient is such that critical concentration of FtsZ required for FtsZ assembly is minimum at medial position of cell,hence Z-ring and ultimately divisome complex is formed at middle of cell.

Communicating Distress[edit]

FtsZ polymerization is also linked to stressors like DNA damage. DNA damage induces a variety of proteins to be manufactured, one of them called SulA.[12] SulA prevents the polymerization and GTPase activity of FtsZ. SulA accomplishes this task by binding to self-recognizing FtsZ sites. By sequestering FtsZ, the cell can directly link DNA damage to inhibiting cell division.[13]

Preventing DNA damage[edit]

Like SulA, there are other mechanisms that prevent cell division that would result in disrupted genetic information sent to daughter cells. So far, two proteins have been identified in E. coli and B. subtilis that prevent division over the nucleoid region: Noc and SlmA. Noc gene knockouts result in cells that divide without respect to the nucleoid region, resulting in its asymmetrical partitioning between the daughter cells. The mechanism is not well understood, but thought to involve sequestration of FtsZ, preventing polymerization over the nucleoid region.[14] SlmA, like SulA, has been observed to sequester FtsZ, preventing the formation of the polymerized Z Ring over the nucleoid region.[15]

References[edit]

  1. Chen JC, Weiss DS, Ghigo JM, Beckwith J (15 January 1999). "Septal Localization of FtsQ, an Essential Cell Division Protein in Escherichia coli". J. Bacteriol. 181 (2): 521–30. PMC 93406. PMID 9882666. 
  2. Löwe J, Amos LA (January 1998). "Crystal structure of the bacterial cell-division protein FtsZ". Nature 391 (6663): 203–6. doi:10.1038/34472. PMID 9428770. 
  3. Romberg L, Levin PA (2003). "Assembly dynamics of the bacterial cell division protein FTSZ: poised at the edge of stability". Annu. Rev. Microbiol. 57: 125–54. doi:10.1146/annurev.micro.57.012903.074300. PMID 14527275. 
  4. Scheffers D, Driessen AJ (September 2001). "The polymerization mechanism of the bacterial cell division protein FtsZ". FEBS Lett. 506 (1): 6–10. doi:10.1016/S0014-5793(01)02855-1. PMID 11591361. 
  5. van den Ent F, Amos L, Löwe J (December 2001). "Bacterial ancestry of actin and tubulin". Current Opinion in Microbiology 4 (6): 634–8. doi:10.1016/S1369-5274(01)00262-4. PMID 11731313. 
  6. Mendieta J, Rico AI, López-Viñas E, Vicente M, Mingorance J, Gómez-Puertas P (May 2009). "Structural and Functional Model for Ionic (K+/Na+) and pH Dependence of GTPase Activity and Polymerization of FtsZ, the Prokaryotic Ortholog of Tubulin". Journal of Molecular Biology. 390: 17–25. doi:10.1016/j.jmb.2009.05.018. PMID 19447111. 
  7. Mingorance J, Rivas G, Vélez, M, Gómez-Puertas P, Vicente M (Aug 2011). "Strong FtsZ is with the force: mechanisms to constrict bacteria". Trends in Microbiology. 18: 348–56. doi:10.1016/j.tim.2010.06.001. PMID 20598544. 
  (8) Rashid, Aijaz and Sing, Perminder. Critical Concentration Gradient Model of Bacterial Cell Division. Available from Nature Precedings <http://hdl.handle.net/10101/npre.2010.4659.1> (2010)
  1. ^ Ishikawa,Hajime;Kuroiwa,Tsuneyoshi;Nagata,Kazuhiro. (March 2005). 『細胞生物学事典』. 朝倉書店. pp. 159–160. ISBN 978-4-254-17118-1. 
  2. ^ R. Strepp, S. Scholz, S. Kruse, V. Speth, R. Reski (1998): Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proceedings of the National Academy of Science USA 95: 4368–4373.
  3. ^ Masaki Osawa, David E. Anderson, and Harold P. Erickson (2009). "Reconstitution of Contractile FtsZ Rings in Liposomes". Science 320 (7): 792–4. doi:10.1126/science.1154520. PMC 2645864. PMID 18420899. 
  4. ^ Erickson, Harold P. (2007). "Evolution of the cytoskeleton". BioEssays 29 (7): 668–77. doi:10.1002/bies.20601. PMC 2630885. PMID 17563102. 
  5. ^ Leaver M, Domínguez-Cuevas P, Coxhead JM, Daniel RA, Errington J (February 2009). "Life without a wall or division machine in Bacillus subtilis". Nature 457 (7231): 849–853. doi:10.1038/nature07742. PMID 19212404. 
  6. ^ Desai A, Mitchison TJ (1997). "Microtubule polymerization dynamics". Annu Rev Cell Dev Biol 13: 83–117. doi:10.1146/annurev.cellbio.13.1.83. PMID 9442869. 
  7. ^ Bi EF, Lutkenhaus J (1991). "FtsZ ring structure associated with division in Escherichia coli". Nature 354 (3–5): 161–164. doi:10.1038/354161a0. PMID 1944597. 
  8. ^ Lan G, Debrowsky TM, Daniels BR, Wirtz D, Sun SX. (2009). "Condensation of FtsZ can Drive Bacterial Cell Division". Proc. Natl. Acad. Sci. 106 (1): 121–126. doi:10.1073/pnas.0807963106. PMC 2629247. PMID 19116281. 
  9. ^ Pichoff S, Lutkenhaus J (2005). "Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA". Mol Microbiol 55 (6): 1722–1734. doi:10.1111/j.1365-2958.2005.04522.x. PMID 15752196. 
  10. ^ Buddelmeijer N, Beckwith J (2002). "Assembly of cell division proteins at the E. coli cell center". Current Opinion in Microbiology 5 (6): 553–557. doi:10.1016/S1369-5274(02)00374-0. PMID 12457697. 
  11. ^ Harry EJ (2001). "Coordinating DNA replication with cell division: lessons from outgrowing spores". Biochimie 83 (1).): 75–81. doi:10.1016/S0300-9084(00)01220-7. PMID 11254978. 
  12. ^ He AS, Rohatgi PR, Hersh MN, Rosenberg SM (2006). "Roles of E. coli double-strand-break-repair proteins in stress-induced mutation". DNA Repair 5 (2): 258–273. doi:10.1016/j.dnarep.2005.10.006. PMID 16310415. 
  13. ^ Mukherjee A, Lutkenhaus J (1998). "Dynamic assembly of FtsZ regulated by GTP hydrolysis". The EMBO Journal 17 (2): 462–469. doi:10.1093/emboj/17.2.462. PMC 1170397. PMID 9430638. 
  14. ^ Wu LJ, Errington J (2006). "Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis". Cell 117 (7): 915–925. doi:10.1016/j.cell.2004.06.002. PMID 15210112. 
  15. ^ Bernhardt TG, de Boer PA (2005). "SlmA, a nucleoid-associated, FtsZ-binding protein required for blocking septal ring assembly over chromosomes in E. coli". Mol Cell 18 (5): 555–564. doi:10.1016/j.molcel.2005.04.012. PMID 15916962. 
Wikipedia content is licensed under the GFDL License
Powered by YouTube
LEGAL
  • Mashpedia © 2014