What is a Genome?
What is a Genome?
Published: 2010/05/03
Channel: USCCollege
How to sequence the human genome - Mark J. Kiel
How to sequence the human genome - Mark J. Kiel
Published: 2013/12/09
Channel: TED-Ed
What is Genome? [Winner of the RCSU Science Challenge 2013]
What is Genome? [Winner of the RCSU Science Challenge 2013]
Published: 2013/03/20
Channel: Abellona U
How to read the genome and build a human being | Riccardo Sabatini
How to read the genome and build a human being | Riccardo Sabatini
Published: 2016/05/24
Channel: TED
DNA Genesis - The Children Of Adam - National Geographic Documentary Films - Full HD Documentaries
DNA Genesis - The Children Of Adam - National Geographic Documentary Films - Full HD Documentaries
Published: 2015/01/23
Channel: Waleed Higgins
The race to sequence the human genome - Tien Nguyen
The race to sequence the human genome - Tien Nguyen
Published: 2015/10/12
Channel: TED-Ed
The Human Genome Project, 3D Animation
The Human Genome Project, 3D Animation
Published: 2013/12/17
Channel: iHMED Videos
What Neanderthal DNA Is Doing To Your Genome
What Neanderthal DNA Is Doing To Your Genome
Published: 2017/02/24
Channel: SciShow
Genome: Unlocking Life’s Code
Genome: Unlocking Life’s Code
Published: 2014/11/07
Channel: University of California Television (UCTV)
An Introduction to the Human Genome | HMX Genetics
An Introduction to the Human Genome | HMX Genetics
Published: 2017/05/19
Channel: Harvard University
Genome Editing with CRISPR-Cas9
Genome Editing with CRISPR-Cas9
Published: 2014/11/05
Channel: McGovern Institute for Brain Research at MIT
2017 Killian Lecture: Eric Lander, "Secrets of the Human Genome"
2017 Killian Lecture: Eric Lander, "Secrets of the Human Genome"
Published: 2017/02/23
Channel: MIT Institute Events
Whole Genome Sequencing and You
Whole Genome Sequencing and You
Published: 2012/11/08
Channel: Icahn School of Medicine
The Secret of Our Lives: The Human Genome Project
The Secret of Our Lives: The Human Genome Project
Published: 2013/10/13
Channel: oisiaa
Fat Jon, Nujabes - Genome
Fat Jon, Nujabes - Genome
Published: 2008/10/22
Channel: Powniiiiii
3 Sad Surprises: The Human Genome Project
3 Sad Surprises: The Human Genome Project
Published: 2012/07/24
Channel: SciShow
Splicing and Dicing DNA: Genome Engineering and the CRISPR Revolution
Splicing and Dicing DNA: Genome Engineering and the CRISPR Revolution
Published: 2016/08/09
Channel: World Science Festival
How to interpret the human genome | Alisha Holloway | TEDxClaremontColleges
How to interpret the human genome | Alisha Holloway | TEDxClaremontColleges
Published: 2015/09/02
Channel: TEDx Talks
The Story of You: ENCODE and the human genome
The Story of You: ENCODE and the human genome
Published: 2012/09/10
Channel: nature video
Prokaryotic vs. eukaryotic genomes
Prokaryotic vs. eukaryotic genomes
Published: 2014/02/18
Channel: BleierBiology
Le décryptage du génome humain : Espoir ou menace ?
Le décryptage du génome humain : Espoir ou menace ?
Published: 2016/01/19
Channel: Documentaires Intéressants
Genome sequencing
Genome sequencing
Published: 2013/12/11
Channel: Shomu's Biology
Jennifer Doudna (UC Berkeley / HHMI): Genome Engineering with CRISPR-Cas9
Jennifer Doudna (UC Berkeley / HHMI): Genome Engineering with CRISPR-Cas9
Published: 2015/03/23
Channel: iBiology Science Stories
Secrets of the Human Genome
Secrets of the Human Genome
Published: 2016/05/02
Channel: MIT2016: Celebrating a Century In Cambridge
Tracking the human genome in 4D
Tracking the human genome in 4D
Published: 2017/10/10
Channel: Science Magazine
Samurai Champloo - Genome
Samurai Champloo - Genome
Published: 2008/04/24
Channel: cammogale
Would You Edit Your Child’s Genome?
Would You Edit Your Child’s Genome?
Published: 2017/05/03
Channel: PBS Idea Channel
Genome annotation
Genome annotation
Published: 2015/05/29
Channel: Shomu's Biology
How the Human Genome Project Transformed Medicine
How the Human Genome Project Transformed Medicine
Published: 2017/09/06
Channel: Bloomberg TV Markets and Finance
Cancer’s Last Stand? The Genome Solution
Cancer’s Last Stand? The Genome Solution
Published: 2015/01/12
Channel: World Science Festival
Deepcool Genome II
Deepcool Genome II
Published: 2017/04/23
Channel: JPModified
Molecular Basis of Inheritance - Human Genome Project - Part 1
Molecular Basis of Inheritance - Human Genome Project - Part 1
Published: 2016/06/12
Channel: Neela Bakore Tutorials
Published: 2016/09/01
Channel: MrGameFaitSonShow
Human Genome Timeline Animation
Human Genome Timeline Animation
Published: 2017/06/22
Channel: National Human Genome Research Institute
DeepCool Genome II Review + Build
DeepCool Genome II Review + Build
Published: 2017/01/11
Channel: Science Studio
C elegans genome
C elegans genome
Published: 2013/11/28
Channel: Shomu's Biology
Genome Organization | Molecular Biology
Genome Organization | Molecular Biology
Published: 2015/11/07
Sasquatch Genome Project Press Conference
Sasquatch Genome Project Press Conference
Published: 2014/10/04
Channel: Dr. Melba Ketchum
Reprogramming the Human Genome With Artificial Intelligence - Brendan Frey - NIPS 2017
Reprogramming the Human Genome With Artificial Intelligence - Brendan Frey - NIPS 2017
Published: 2017/12/09
Channel: The Artificial Intelligence Channel
Virology Lectures 2017 #3: Genomes and Genetics
Virology Lectures 2017 #3: Genomes and Genetics
Published: 2017/01/26
Channel: Vincent Racaniello
What is the Human Genome Project?
What is the Human Genome Project?
Published: 2016/12/05
Channel: AthGene
High End Gaming Build - Deepcool Genome
High End Gaming Build - Deepcool Genome
Published: 2016/04/17
Channel: Tech Obsession
Gamer Storm Genome ROG Certified Edition Build Guide
Gamer Storm Genome ROG Certified Edition Build Guide
Published: 2016/12/16
The Neanderthal Genome Project
The Neanderthal Genome Project
Published: 2009/06/03
Channel: DNA Learning Center
20. Human Genetics, SNPs, and Genome Wide Associate Studies
20. Human Genetics, SNPs, and Genome Wide Associate Studies
Published: 2015/01/20
Channel: MIT OpenCourseWare
The BEST Gaming PC Case? - DeepCool Genome ROG Certified Edition Unboxing and Review
The BEST Gaming PC Case? - DeepCool Genome ROG Certified Edition Unboxing and Review
Published: 2017/03/27
Genome Mapping Will Expand Our Life Expectancies | Alec Ross
Genome Mapping Will Expand Our Life Expectancies | Alec Ross
Published: 2016/09/09
Channel: Big Think
NCBI Minute:  Download Genome Data via FTP
NCBI Minute: Download Genome Data via FTP
Published: 2016/09/06
Channel: NCBI
How the Human Genome was sequenced
How the Human Genome was sequenced
Published: 2010/08/20
Channel: yourgenome
The Ragsdale Lab - Octopus Intelligence & Genome Research at UChicago
The Ragsdale Lab - Octopus Intelligence & Genome Research at UChicago
Published: 2016/05/20
Channel: The University of Chicago
GO TO RESULTS [51 .. 100]


From Wikipedia, the free encyclopedia
  (Redirected from Genome sequence)
Jump to: navigation, search
An image of the 46 chromosomes making up the diploid genome of a human male. (The mitochondrial chromosome is not shown.)

In modern molecular biology and genetics, a genome is the genetic material of an organism. It consists of DNA (or RNA in RNA viruses). The genome includes both the genes (the coding regions) and the noncoding DNA,[1] as well as the genetic material of the mitochondria[2] and chloroplasts.

Origin of term[edit]

The term genome was created in 1920 by Hans Winkler,[3] professor of botany at the University of Hamburg, Germany. The Oxford Dictionary suggests the name is a blend of the words gene and chromosome.[4] However, see omics for a more thorough discussion. A few related -ome words already existed—such as biome, rhizome, forming a vocabulary into which genome fits systematically.[5]


Some organisms have multiple copies of chromosomes: diploid, triploid, tetraploid and so on. In classical genetics, in a sexually reproducing organism (typically eukarya) the gamete has half the number of chromosomes of the somatic cell and the genome is a full set of chromosomes in a diploid cell. The halving of the genetic material in gametes is accomplished by the segregation of homologous chromosomes during meiosis.[6] In haploid organisms, including cells of bacteria, archaea, and in organelles including mitochondria and chloroplasts, or viruses, that similarly contain genes, the single or set of circular or linear chains of DNA (or RNA for some viruses), likewise constitute the genome. The term genome can be applied specifically to mean what is stored on a complete set of nuclear DNA (i.e., the "nuclear genome") but can also be applied to what is stored within organelles that contain their own DNA, as with the "mitochondrial genome" or the "chloroplast genome". Additionally, the genome can comprise non-chromosomal genetic elements such as viruses, plasmids, and transposable elements.[7]

Typically, when it is said that the genome of a sexually reproducing species has been "sequenced", it refers to a determination of the sequences of one set of autosomes and one of each type of sex chromosome, which together represent both of the possible sexes. Even in species that exist in only one sex, what is described as a "genome sequence" may be a composite read from the chromosomes of various individuals. Colloquially, the phrase "genetic makeup" is sometimes used to signify the genome of a particular individual or organism.[citation needed] The study of the global properties of genomes of related organisms is usually referred to as genomics, which distinguishes it from genetics which generally studies the properties of single genes or groups of genes.

Both the number of base pairs and the number of genes vary widely from one species to another, and there is only a rough correlation between the two (an observation is known as the C-value paradox). At present, the highest known number of genes is around 60,000, for the protozoan causing trichomoniasis (see List of sequenced eukaryotic genomes), almost three times as many as in the human genome.

The human genome is analogous to the instructions stored in a cookbook. Just as a cookbook gives the instructions needed to make a range of meals including a holiday feast or a summer picnic, the human genome contains all the instructions needed to make the full range of human cell types including muscle cells or neurons.

  • The book (genome) would contain 23 chapters (chromosomes);
  • Each chapter contains 48 to 250 million letters (A,C,G,T) without spaces;
  • Hence, the book contains over 3.2 billion letters total;
  • The book contains approximately 20,000 different recipes (genes), which together make up less than 2% of the letters in the book.
  • The book fits into a cell nucleus the size of a pinpoint;
  • Most cells contain two copies of the book (all 23 chapters). Gametes (egg and sperm cells) contain only one copy, and mature red blood cells (which become enucleated during development) lack a genome.

Sequencing and mapping[edit]

Part of DNA sequence - prototypification of complete genome of virus

In 1976, Walter Fiers at the University of Ghent (Belgium) was the first to establish the complete nucleotide sequence of a viral RNA-genome (Bacteriophage MS2). The next year Fred Sanger completed the first DNA-genome sequence: Phage Φ-X174, of 5386 base pairs.[8] The first complete genome sequences among all three domains of life were released within a short period during the mid-1990s: The first bacterial genome to be sequenced was that of Haemophilus influenzae, completed by a team at The Institute for Genomic Research in 1995. A few months later, the first eukaryotic genome was completed, with sequences of the 16 chromosomes of budding yeast Saccharomyces cerevisiae published as the result of a European-led effort begun in the mid-1980s. The first genome sequence for an archaeon, Methanococcus jannaschii, was completed in 1996, again by The Institute for Genomic Research.

The development of new technologies has made it dramatically easier and cheaper to do sequencing, and the number of complete genome sequences is growing rapidly. The US National Institutes of Health maintains one of several comprehensive databases of genomic information.[9] Among the thousands of completed genome sequencing projects include those for rice, a mouse, the plant Arabidopsis thaliana, the puffer fish, and the bacteria E. coli. In December 2013, scientists first sequenced the entire genome of a Neanderthal, an extinct species of humans. The genome was extracted from the toe bone of a 130,000-year-old Neanderthal found in a Siberian cave.[10][11]

New sequencing technologies, such as massive parallel sequencing have also opened up the prospect of personal genome sequencing as a diagnostic tool, as pioneered by Manteia Predictive Medicine. A major step toward that goal was the completion in 2007 of the full genome of James D. Watson, one of the co-discoverers of the structure of DNA.[12]

Whereas a genome sequence lists the order of every DNA base in a genome, a genome map identifies the landmarks. A genome map is less detailed than a genome sequence and aids in navigating around the genome. The Human Genome Project was organized to map and to sequence the human genome. A fundamental step in the project was the release of a detailed genomic map by Jean Weissenbach and his team at the Genoscope in Paris.[13][14]

Reference genome sequences and maps continue to be updated, removing errors and clarifying regions of high allelic complexity.[15] The decreasing cost of genomic mapping has permitted genealogical sites to offer it as a service,[16] to the extent that one may submit one's genome to crowd sourced scientific endeavours such as at the New York Genome Center, an example both of the economies of scale and of citizen science.[17]

Genome composition[edit]

Genome composition is used to describe the make up of a haploid genome, including the genome size and proportions of non-repetitive DNA and repetitive DNA. By comparing the genome compositions between genomes, scientists can better understand the evolutionary history of a given genome.


Viral genomes can be composed of either RNA or DNA. The genomes of RNA viruses can be either single-stranded or double-stranded RNA, and may contain one or more separate RNA molecules. DNA viruses can have either single-stranded or double-stranded genomes. Most DNA virus genomes are composed of a single, linear molecule of DNA, but some are made up of a circular DNA molecule.[18]


Prokaryotes and eukaryotes have DNA genomes. Archaea have a single circular chromosome.[19] Most bacteria also have a single circular chromosome; however, some bacterial species have linear chromosomes[20] or multiple chromosomes.[21] If the DNA is replicated faster than the bacterial cells divide, multiple copies of the chromosome can be present in a single cell. Most prokaryotes have very little repetitive DNA in their genomes.[22]

Some bacteria have auxiliary genetic material, which is carried in plasmids.


Eukaryotic genomes are composed of one or more linear DNA chromosomes. The number of chromosomes varies widely from Jack jumper ants and an asexual nemotode,[23] which each have only one pair, to a fern species that has 720 pairs.[24] A typical human cell has two copies of each of 22 autosomes, one inherited from each parent, plus two sex chromosomes, making it diploid. Gametes, such as ova, sperm, spores, and pollen, are haploid, meaning they carry only one copy of each chromosome.

In addition to the chromosomes in the nucleus, organelles such as the chloroplasts and mitochondria have their own DNA. Mitochondria are sometimes said to have their own genome often referred to as the "mitochondrial genome". The DNA found within the chloroplast may be referred to as the "plastome". Like the bacteria they originated from, mitochondria and chloroplasts have a circular chromosome.

Unlike prokaryotes, eukaryotes have exon-intron organization of protein coding genes and variable amounts of repetitive DNA. In mammals and plants, the majority of the genome is composed of repetitive DNA.[25]

Coding sequences[edit]

DNA sequences that carry the instructions to make proteins are coding sequences. The proportion of the genome occupied by coding sequences varies widely. A bigger genome does not mean more genes, and the proportion of non-repetitive DNA decreases along with increasing genome size in complex eukaryotes.[25]

Most bacteria have little or no repetitive DNA, hence their typical protein coding capacity is in the range of 85-90%. However, some symbiotic bacteria (e.g. Serratia symbiotica) have reduced genomes and a high fraction of pseudogenes: only ~40% of their DNA encodes proteins.[26][27] Simple eukaryotes such as C. elegans and fruit fly, possess more non-repetitive DNA than repetitive DNA.[25][28] Higher eukaryotes tend to have more repetitive DNA than non-repetitive ones.[29] In some plants and amphibians, the proportion of repetitive DNA is more than 80%.[25] Similarly, only 2% of the human genome codes for proteins.

Composition of the human genome

Noncoding sequences[edit]

Noncoding sequences include introns, sequences for non-coding RNAs, regulatory regions, and repetitive DNA. Noncoding sequences make up 98% of the human genome. There are two categories of repetitive DNA in the genome: tandem repeats and interspersed repeats.[30]

Tandem repeats[edit]

Tandem repeats are short, non-coding sequences that are repeated head-to-tail. Microsatellites consist of 2-5 basepair repeats, while minisatellite repeats are 30-35 bp. Tandem repeats make up about 4% of the human genome and 9% of the fruit fly genome.[31] Tandom repeats can be functional. For example, telomeres are composed of the tandem repeat TTAGGG in mammals, and they play an important role in protecting the ends of the chromosome.

In other cases, expansions in the number of tandem repeats in exons or introns can cause disease[32]. For example, the human gene huntingtin typically contains 6-29 tandem repeats of the nucleotides CAG (encoding a polyglutamine tract). An expansion to over 36 repeats results in Huntington's disease, a neurodegenerative disease. Twenty human disorders are known to result from similar tandem repeat expansions in various genes. The mechanism by which proteins with expanded polygulatamine tracts cause death of neurons is not fully understood. One possibility is that the proteins fail to fold properly and avoid degradation, instead accumulating in aggregates that also sequester important transcription factors, thereby altering gene expression [32].

Tandem repeats are usually caused by slippage during replication, unequal crossing-over and gene conversion.[33]

Transposable elements[edit]

Transposable elements (TEs) are sequences of DNA with a defined structure that are able to change their location in the genome. [31][22][34] TEs are categorized as either class I TEs, which replicate by a copy-and-paste mechanism, or class II TEs, which can be excised from the genome and inserted at a new location.

The movement of TEs is a driving force of genome evolution in eukaryotes because their insertion can disrupt gene functions, homologous recombination between TEs can produce duplications, and TE can shuffle exons and regulatory sequences to new locations.[35]


Retrotransposons can be transcribed into RNA, which are then duplicated at another site into the genome.[36] Retrotransposons can be divided into Long terminal repeats (LTRs) and Non-Long Terminal Repeats (Non-LTR).[35]

Long terminal repeats (LTRs) 
similar to retroviruses, which have both gag and pol genes to make cDNA from RNA and proteins to insert into genome, but LTRs can only act within the cell as they lack the env gene in retroviruses.[34] It has been reported that LTRs consist of the largest fraction in most plant genome and might account for the huge variation in genome size.[37]
Non-long terminal repeats (Non-LTRs) 
can be divided into long interspersed elements (LINEs), short interspersed elements (SINEs) and Penelope-like elements. In Dictyostelium discoideum, there is another DIRS-like elements belong to Non-LTRs. Non-LTRs are widely spread in eukaryotic genomes.[38]
Long interspersed elements (LINEs) 
are able to encode two Open Reading Frames (ORFs) to generate transcriptase and endonuclease, which are essential in retrotransposition. The human genome has around 500,000 LINEs, taking around 17% of the genome.[39]
Short interspersed elements (SINEs) 
are usually less than 500 base pairs and need to co-opt with the LINEs machinery to function as nonautonomous retrotransposons.[40] The Alu element is the most common SINEs found in primates, it has a length of about 350 base pairs and takes about 11% of the human genome with around 1,500,000 copies.[35]
DNA transposons[edit]

DNA transposons encode a transposase enzyme between inverted terminal repeats. When expressed, the transposase can catalyze the excision of the TE and its reinsertion in a new site.[31] This cut-and-paste mechanism typically reinserts transposons near their original location (within 100kb). [35] DNA transposons are found in bacteria and make up 3% of the human genome and 12% of the genome of the roundworm C. elegans.[35]

Genome size[edit]

Log-log plot of the total number of annotated proteins in genomes submitted to GenBank as a function of genome size.[41]

Genome size is the total number of DNA base pairs in one copy of a haploid genome. In humans, the nuclear genome comprises approximately 3.2 billion nucleotides of DNA, divided into 24 linear molecules, the shortest 50 000 000 nucleotides in length and the longest 260 000 000 nucleotides, each contained in a different chromosome.[42] The genome size is positively correlated with the morphological complexity among prokaryotes and lower eukaryotes; however, after mollusks and all the other higher eukaryotes above, this correlation is no longer effective.[25][43] This phenomenon also indicates the mighty influence coming from repetitive DNA act on the genomes.

Since genomes are very complex, one research strategy is to reduce the number of genes in a genome to the bare minimum and still have the organism in question survive. There is experimental work being done on minimal genomes for single cell organisms as well as minimal genomes for multi-cellular organisms (see Developmental biology). The work is both in vivo and in silico.[44][45]

Here is a table of some significant or representative genomes. See #See also for lists of sequenced genomes.

Organism type Organism Genome size
(base pairs)
Approx. no. of genes Note
Virus Porcine circovirus type 1 1,759 1.8kb Smallest viruses replicating autonomously in eukaryotic cells.[46]
Virus Bacteriophage MS2 3,569 3.5kb First sequenced RNA-genome[47]
Virus SV40 5,224 5.2kb [48]
Virus Phage Φ-X174 5,386 5.4kb First sequenced DNA-genome[49]
Virus HIV 9,749 9.7kb [50]
Virus Phage λ 48,502 48.5kb Often used as a vector for the cloning of recombinant DNA.

[51] [52] [53]

Virus Megavirus 1,259,197 1.3Mb Until 2013 the largest known viral genome.[54]
Virus Pandoravirus salinus 2,470,000 2.47Mb Largest known viral genome.[55]
Bacterium Nasuia deltocephalinicola (strain NAS-ALF) 112,091 112kb Smallest non-viral genome.[56]
Bacterium Carsonella ruddii 159,662 160kb
Bacterium Buchnera aphidicola 600,000 600kb [57]
Bacterium Wigglesworthia glossinidia 700,000 700Kb
Bacterium Haemophilus influenzae 1,830,000 1.8Mb First genome of a living organism sequenced, July 1995[58]
Bacterium Escherichia coli 4,600,000 4.6Mb 4288 [59]
Bacterium Solibacter usitatus (strain Ellin 6076) 9,970,000 10Mb [60]
Bacteriumcyanobacterium Prochlorococcus spp. (1.7 Mb) 1,700,000 1.7Mb 1884 Smallest known cyanobacterium genome[61][62]
Bacterium – cyanobacterium Nostoc punctiforme 9,000,000 9Mb 7432 7432 "open reading frames"[63]
Amoeboid Polychaos dubium ("Amoeba" dubia) 670,000,000,000 670Gb Largest known genome.[64] (Disputed)[65]
Eukaryotic organelle Human mitochondrion 16,569 16.6kb [66]
Plant Genlisea tuberosa 61,000,000 61Mb Smallest recorded flowering plant genome, 2014.[67]
Plant Arabidopsis thaliana 135,000,000 [68] 135 Mb 27,655[69] First plant genome sequenced, December 2000.[70]
Plant Populus trichocarpa 480,000,000 480Mb 73013 First tree genome sequenced, September 2006[71]
Plant Fritillaria assyrica 130,000,000,000 130Gb
Plant Paris japonica (Japanese-native, pale-petal) 150,000,000,000 150Gb Largest plant genome known[72]
Plant – moss Physcomitrella patens 480,000,000 480Mb First genome of a bryophyte sequenced, January 2008.[73]
Fungusyeast Saccharomyces cerevisiae 12,100,000 12.1Mb 6294 First eukaryotic genome sequenced, 1996[74]
Fungus Aspergillus nidulans 30,000,000 30Mb 9541 [75]
Nematode Pratylenchus coffeae 20,000,000 20Mb [76] Smallest animal genome known[77]
Nematode Caenorhabditis elegans 100,300,000 100Mb 19000 First multicellular animal genome sequenced, December 1998[78]
Insect Drosophila melanogaster (fruit fly) 175,000,000 175Mb 13600 Size variation based on strain (175-180Mb; standard y w strain is 175Mb)[79]
Insect Apis mellifera (honey bee) 236,000,000 236Mb 10157 [80])
Insect Bombyx mori (silk moth) 432,000,000 432Mb 14623 14,623 predicted genes[81]
Insect Solenopsis invicta (fire ant) 480,000,000 480Mb 16569 [82]
Mammal Mus musculus 2,700,000,000 2.7Gb 20210 [83]
Mammal Homo sapiens 3,289,000,000 3.3Gb 20000 Homo sapiens estimated genome size 3.2 billion bp[84]

Initial sequencing and analysis of the human genome[85]

Mammal Pan paniscus 3,286,640,000 3.3Gb 20000 Bonobo - estimated genome size 3.29 billion bp[86]
Fish Tetraodon nigroviridis (type of puffer fish) 385,000,000 390Mb Smallest vertebrate genome known estimated to be 340 Mb[87][88] – 385 Mb.[89]
Fish Protopterus aethiopicus (marbled lungfish) 130,000,000,000 130Gb Largest vertebrate genome known

Genome compression[edit]

Genomes are compressed according to reference-free and reference compression. See Hosseini et al. for a review on genome compression tools.[90]

Reference-free compression[edit]

The human reference genome (GRC v38) has been successfully compressed to ~5.2-fold (marginal less than 550 MB) in 155 minutes using a desktop computer with 6.4 GB of RAM.[91]

Reference compression[edit]

The compression ratio of currently available genomic data compression tools ranges between 65-fold and 1,200-fold for human genomes.[92][93][94][95][96][97][91]

Genomic alterations[edit]

All the cells of an organism originate from a single cell, so they are expected to have identical genomes; however, in some cases, differences arise. Both the process of copying DNA during cell division and exposure to environmental mutagens can result in mutations in somatic cells. In some cases, such mutations lead to cancer because they cause cells to divide more quickly and invade surrounding tissues.[98] In certain lymphocytes in the human immune system, V(D)J recombination generates different genomic sequences such that each cell produces a unique antibody or T cell receptors.

During meiosis, diploid cells divide twice to produce haploid germ cells. During this process, recombination results in a reshuffling of the genetic material from homologous chromosomes so each gamete has a unique genome.

Genome evolution[edit]

Genomes are more than the sum of an organism's genes and have traits that may be measured and studied without reference to the details of any particular genes and their products. Researchers compare traits such as karyotype (chromosome number), genome size, gene order, codon usage bias, and GC-content to determine what mechanisms could have produced the great variety of genomes that exist today (for recent overviews, see Brown 2002; Saccone and Pesole 2003; Benfey and Protopapas 2004; Gibson and Muse 2004; Reese 2004; Gregory 2005).

Duplications play a major role in shaping the genome. Duplication may range from extension of short tandem repeats, to duplication of a cluster of genes, and all the way to duplication of entire chromosomes or even entire genomes. Such duplications are probably fundamental to the creation of genetic novelty.

Horizontal gene transfer is invoked to explain how there is often an extreme similarity between small portions of the genomes of two organisms that are otherwise very distantly related. Horizontal gene transfer seems to be common among many microbes. Also, eukaryotic cells seem to have experienced a transfer of some genetic material from their chloroplast and mitochondrial genomes to their nuclear chromosomes. Recent empirical data suggest an important role of viruses and sub-viral RNA-networks to represent a main driving role to generate genetic novelty and natural genome editing.[99]

Genomes in fiction[edit]

Works of science fiction illustrate concerns about the availability of genome sequences.

Michael Crichton's 1990 novel Jurassic Park and the subsequent film tell the story of a billionaire who creates a theme park of cloned dinosaurs on a remote island, with disastrous outcomes. A geneticist extracts dinosaur DNA from the blood of ancient mosquitoes and fills in the gaps with DNA from modern species to create several species of dinosaurs. A chaos theorist is asked to give his expert opinion on the safety of engineering an ecosystem with the dinosaurs, and he repeatedly warns that the outcomes of the project will be unpredictable and ultimately uncontrollable. These warnings about the perils of using genomic information are a major theme of the book.

The 1997 film Gattaca is set in a futurist society where genomes of children are engineered to contain the most ideal combination of their parents' traits, and metrics such as risk of heart disease and predicted life expectancy are documented for each person based on their genome. People conceived outside of the eugenics program, known as "In-Valids" suffer discrimination and are relegated to menial occupations. The protagonist of the film is an In-Valid who works to defy the supposed genetic odds and achieve his dream of working as a space navigator. The film warns against a future where genomic information fuels prejudice and extreme class differences between those who can and can't afford genetically engineered children[100].

See also[edit]


  1. ^ Brosius, J (2009), "The Fragmented Gene", Annals of the New York Academy of Sciences, 1178: 186–193, doi:10.1111/j.1749-6632.2009.05004.x 
  2. ^ Ridley, M. (2006), Genome: the autobiography of a species in 23 chapters (PDF), New York: Harper Perennial, ISBN 0-06-019497-9 
  3. ^ Winkler, HL (1920). Verbreitung und Ursache der Parthenogenesis im Pflanzen- und Tierreiche. Jena: Verlag Fischer. 
  4. ^ "definition of Genome in Oxford dictionary". Retrieved 25 March 2014. 
  5. ^ Lederberg, Joshua; McCray, Alexa T. (2001). "'Ome Sweet 'Omics – A Genealogical Treasury of Words" (PDF). The Scientist. 15 (7). Archived from the original (PDF) on 29 September 2006. 
  6. ^ Griffiths JF; Gelbart WM; Lewontin RC; Wessler SR; Suzuki DT; Miller JH (2005). Introduction to Genetic Analysis. New York: W.H. Freeman and Co. pp. 34–40, 473–476, 626–629. ISBN 0-7167-4939-4. 
  7. ^ Madigan M; Martinko J, eds. (2006). Brock Biology of Microorganisms (11th ed.). Prentice Hall. ISBN 0-13-144329-1. 
  8. ^ [1]
  9. ^ "Genome Home". 2010-12-08. Retrieved 27 January 2011. 
  10. ^ Zimmer, Carl (December 18, 2013). "Toe Fossil Provides Complete Neanderthal Genome". New York Times. Retrieved 18 December 2013. 
  11. ^ Prüfer, Kay; Racimo, Fernando; Patterson, Nick; Jay, Flora; Sankararaman, Sriram; Sawyer, Susanna; Heinze, Anja; Renaud, Gabriel; Sudmant, Peter H.; De Filippo, Cesare; Li, Heng; Mallick, Swapan; Dannemann, Michael; Fu, Qiaomei; Kircher, Martin; Kuhlwilm, Martin; Lachmann, Michael; Meyer, Matthias; Ongyerth, Matthias; Siebauer, Michael; Theunert, Christoph; Tandon, Arti; Moorjani, Priya; Pickrell, Joseph; Mullikin, James C.; Vohr, Samuel H.; Green, Richard E.; Hellmann, Ines; Johnson, Philip L. F.; et al. (December 18, 2013). "The complete genome sequence of a Neanderthal from the Altai Mountains". Nature. 505 (7481): 43–49. Bibcode:2014Natur.505...43P. doi:10.1038/nature12886. PMC 4031459Freely accessible. PMID 24352235. Retrieved 18 December 2013. 
  12. ^ Wade, Nicholas (2007-05-31). "Genome of DNA Pioneer Is Deciphered". The New York Times. Retrieved 2 April 2010. 
  13. ^ "What's a Genome?". 2003-01-15. Retrieved 27 January 2011. 
  14. ^ NCBI_user_services (29 March 2004). "Mapping Factsheet". Archived from the original on 19 July 2010. Retrieved 27 January 2011. 
  15. ^ Genome Reference Consortium. "Assembling the Genome". Retrieved 23 August 2016. 
  16. ^ Kaplan, Sarah (2016-04-17). "How do your 20,000 genes determine so many wildly different traits? They multitask". The Washington Post. Retrieved 2016-08-27. 
  17. ^ Zimmer, Carl. "Game of Genomes, Episode 13: Answers and Questions". STAT. Retrieved 2016-08-27. 
  18. ^ Gelderblom, Hans R. (1996). Medical Microbiology (4th ed.). Galveston, TX: The University of Texas Medical Branch at Galveston. 
  19. ^ Samson, Rachel (2014). "Archaeal Chromosome Biology". J Mol Microbiol Biotechnol. doi:10.1159/000368854. PMC 5175462Freely accessible. Retrieved 6 November 2017. 
  20. ^ "Replication of Linear Bacterial Chromosomes: No Longer Going Around in Circles". The Bacterial Chromosome: 525. 2005. doi:10.1128/9781555817640.ch29. 
  21. ^ "Bacterial Chromosomes". Microbial Genetics. 2002. 
  22. ^ a b Koonin, Eugene V.; Wolf, Yuri I. (2010). "Constraints and plasticity in genome and molecular-phenome evolution". Nature Reviews Genetics. 11 (7): 487–498. doi:10.1038/nrg2810. PMC 3273317Freely accessible. PMID 20548290. 
  23. ^ "Scientists sequence asexual tiny worm whose lineage stretches back 18 million years". ScienceDaily. Retrieved 7 November 2017. 
  24. ^ Khandelwal, Sharda (March 1990). "Chromosome evolution in the genus Ophioglossum L". Botanical Journal of the Linnean Society. 102 (3): 205–217. doi:10.1111/j.1095-8339.1990.tb01876.x. 
  25. ^ a b c d e Lewin, Benjamin (2004). Genes VIII (8th ed.). Upper Saddle River, NJ: Pearson/Prentice Hall. ISBN 0-13-143981-2. 
  26. ^ McCutcheon, John P.; Moran, Nancy A. (2011-11-08). "Extreme genome reduction in symbiotic bacteria". Nature Reviews. Microbiology. 10 (1): 13–26. doi:10.1038/nrmicro2670. ISSN 1740-1534. PMID 22064560. 
  27. ^ Land, Miriam; Hauser, Loren; Jun, Se-Ran; Nookaew, Intawat; Leuze, Michael R.; Ahn, Tae-Hyuk; Karpinets, Tatiana; Lund, Ole; Kora, Guruprased (2015-03-01). "Insights from 20 years of bacterial genome sequencing". Functional & Integrative Genomics. 15 (2): 141–161. doi:10.1007/s10142-015-0433-4. ISSN 1438-793X. 
  28. ^ Naclerio, G; Cangiano, G; Coulson, A; Levitt, A; Ruvolo, V; La Volpe, A (1992-07-05). "Molecular and genomic organization of clusters of repetitive DNA sequences in Caenorhabditis elegans". Journal of Molecular Biology. 226 (1): 159–68. doi:10.1016/0022-2836(92)90131-3. PMID 1619649. 
  29. ^ Witzany G ( March 2017) Two Genetic Codes: Repetitive Syntax for Active non-Coding RNAs; non - Repetitive Syntax for the DNA Archives. Comm Integr Biol 10(2):e1297352. doi=10.1080/19420889.2017.1297352
  30. ^ Stojanovic, Nikola, ed. (2007). Computational genomics : current methods. Wymondham: Horizon Bioscience. ISBN 1-904933-30-0. 
  31. ^ a b c Padeken, Jan (April 2015). "Repeat DNA in genome organization and stability". Current Opinion in Genetics & Development. 31. 
  32. ^ a b Usdin, Karen (Jul 2008). "The biological effects of simple tandem repeats: Lessons from the repeat expansion diseases". Genome Research. 18 (7): 1011–1019. doi:10.1101/gr.070409.107. 
  33. ^ Li, YC; Korol, AB; Fahima, T; Beiles, A; Nevo, E (December 2002). "Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review". Molecular Ecology. 11 (12): 2453–65. doi:10.1046/j.1365-294X.2002.01643.x. PMID 12453231. 
  34. ^ a b Wessler, S. R. (13 November 2006). "Eukaryotic Transposable Elements and Genome Evolution Special Feature: Transposable elements and the evolution of eukaryotic genomes". Proceedings of the National Academy of Sciences. 103 (47): 17600–17601. Bibcode:2006PNAS..10317600W. doi:10.1073/pnas.0607612103. 
  35. ^ a b c d e Kazazian, H. H. (12 March 2004). "Mobile Elements: Drivers of Genome Evolution" (PDF). Science. 303 (5664): 1626–1632. Bibcode:2004Sci...303.1626K. doi:10.1126/science.1089670. PMID 15016989. 
  36. ^ Deininger PL; Moran JV; Batzer MA; Kazazian, HH Jr. (December 2003). "Mobile elements and mammalian genome evolution". Current Opinion in Genetics & Development. 13 (6): 651–8. doi:10.1016/j.gde.2003.10.013. PMID 14638329. 
  37. ^ Kidwell MG; Lisch DR (March 2000). "Transposable elements and host genome evolution". Trends in Ecology & Evolution. 15 (3): 95–99. doi:10.1016/S0169-5347(99)01817-0. PMID 10675923. 
  38. ^ Richard G.-F., Kerrest A; Dujon B (3 December 2008). "Comparative Genomics and Molecular Dynamics of DNA Repeats in Eukaryotes". Microbiology and Molecular Biology Reviews. 72 (4): 686–727. doi:10.1128/MMBR.00011-08. PMC 2593564Freely accessible. PMID 19052325. 
  39. ^ Cordaux R; Batzer MA (1 October 2009). "The impact of retrotransposons on human genome evolution". Nature Reviews Genetics. 10 (10): 691–703. doi:10.1038/nrg2640. PMC 2884099Freely accessible. PMID 19763152. 
  40. ^ Han, Jeffrey S.; Boeke, Jef D. (1 August 2005). "LINE-1 retrotransposons: Modulators of quantity and quality of mammalian gene expression?". BioEssays. 27 (8): 775–784. doi:10.1002/bies.20257. PMID 16015595. 
  41. ^ Koonin, Eugene V. (2011-08-31). The Logic of Chance: The Nature and Origin of Biological Evolution. FT Press. ISBN 9780132542494. 
  42. ^ "Human genome". Retrieved 19 August 2016. 
  43. ^ Gregory TR; Nicol JA; Tamm H; Kullman B; Kullman K; Leitch IJ; Murray BG; Kapraun DF; Greilhuber J; Bennett MD (3 January 2007). "Eukaryotic genome size databases". Nucleic Acids Research. 35 (Database): D332–D338. doi:10.1093/nar/gkl828. 
  44. ^ Glass JI; Assad-Garcia N; Alperovich N; Yooseph S; Lewis MR; Maruf M; Hutchison CA 3rd; Smith HO; Venter JC (2006). "Essential genes of a minimal bacterium". Proc Natl Acad Sci USA. 103 (2): 425–30. Bibcode:2006PNAS..103..425G. doi:10.1073/pnas.0510013103. PMC 1324956Freely accessible. PMID 16407165. 
  45. ^ Forster AC; Church GM (2006). "Towards synthesis of a minimal cell". Mol Syst Biol. 2 (1): 45. doi:10.1038/msb4100090. PMC 1681520Freely accessible. PMID 16924266. 
  46. ^ Mankertz P (2008). "Molecular Biology of Porcine Circoviruses". Animal Viruses: Molecular Biology. Caister Academic Press. ISBN 978-1-904455-22-6. 
  47. ^ Fiers W; Contreras, R.; Duerinck, F.; Haegeman, G.; Iserentant, D.; Merregaert, J.; Min Jou, W.; Molemans, F.; Raeymaekers, A.; Van Den Berghe, A.; Volckaert, G.; Ysebaert, M. (1976). "Complete nucleotide-sequence of bacteriophage MS2-RNA – primary and secondary structure of replicase gene". Nature. 260 (5551): 500–507. Bibcode:1976Natur.260..500F. doi:10.1038/260500a0. PMID 1264203. 
  48. ^ Fiers, W.; Contreras, R.; Haegeman, G.; Rogiers, R.; Van De Voorde, A.; Van Heuverswyn, H.; Van Herreweghe, J.; Volckaert, G.; Ysebaert, M. (1978). "Complete nucleotide sequence of SV40 DNA". Nature. 273 (5658): 113–120. Bibcode:1978Natur.273..113F. doi:10.1038/273113a0. PMID 205802. 
  49. ^ Sanger, F.; Air, G.M.; Barrell, B.G.; Brown, N.L.; Coulson, A.R.; Fiddes, J.C.; Hutchison, C.A.; Slocombe, P. M.; Smith, M. (1977). "Nucleotide sequence of bacteriophage phi X174 DNA". Nature. 265 (5596): 687–695. Bibcode:1977Natur.265..687S. doi:10.1038/265687a0. PMID 870828. 
  50. ^ "Virology – Human Immunodeficiency Virus And Aids, Structure: The Genome And Proteins Of HIV". 2010-07-01. Retrieved 27 January 2011. 
  51. ^ Thomason, Lynn; Court, Donald L.; Bubunenko, Mikail; Costantino, Nina; Wilson, Helen; Datta, Simanti; Oppenheim, Amos (2007). "Recombineering: genetic engineering in bacteria using homologous recombination". Current Protocols in Molecular Biology. Chapter 1: Unit 1.16. doi:10.1002/0471142727.mb0116s78. ISBN 0471142727. PMID 18265390. 
  52. ^ Court, D. L.; Oppenheim, A. B.; Adhya, S. L. (2007). "A new look at bacteriophage lambda genetic networks". Journal of Bacteriology. 189 (2): 298–304. doi:10.1128/JB.01215-06. PMC 1797383Freely accessible. PMID 17085553. 
  53. ^ Sanger, F.; Coulson, A.R.; Hong, G.F.; Hill, D.F.; Petersen, G.B. (1982). "Nucleotide sequence of bacteriophage lambda DNA". Journal of Molecular Biology. 162 (4): 729–73. doi:10.1016/0022-2836(82)90546-0. PMID 6221115. 
  54. ^ Legendre, M; Arslan, D; Abergel, C; Claverie, JM (2012). "Genomics of Megavirus and the elusive fourth domain of life| journal". Communicative & Integrative Biology. 5 (1): 102–106. doi:10.4161/cib.18624. PMC 3291303Freely accessible. PMID 22482024. 
  55. ^ Philippe, N.; Legendre, M.; Doutre, G.; Coute, Y.; Poirot, O.; Lescot, M.; Arslan, D.; Seltzer, V.; Bertaux, L.; Bruley, C.; Garin, J.; Claverie, J.-M.; Abergel, C. (2013). "Pandoraviruses: Amoeba Viruses with Genomes Up to 2.5 Mb Reaching That of Parasitic Eukaryotes". Science. 341 (6143): 281–6. Bibcode:2013Sci...341..281P. doi:10.1126/science.1239181. PMID 23869018. 
  56. ^ Bennett, G. M.; Moran, N. A. (5 August 2013). "Small, Smaller, Smallest: The Origins and Evolution of Ancient Dual Symbioses in a Phloem-Feeding Insect". Genome Biology and Evolution. 5 (9): 1675–1688. doi:10.1093/gbe/evt118. PMC 3787670Freely accessible. PMID 23918810. 
  57. ^ Shigenobu, S; Watanabe, H; Hattori, M; Sakaki, Y; Ishikawa, H (Sep 7, 2000). "Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS". Nature. 407 (6800): 81–6. doi:10.1038/35024074. PMID 10993077. 
  58. ^ Fleischmann R; Adams M; White O; Clayton R; Kirkness E; Kerlavage A; Bult C; Tomb J; Dougherty B; Merrick J; McKenney; Sutton; Fitzhugh; Fields; Gocyne; Scott; Shirley; Liu; Glodek; Kelley; Weidman; Phillips; Spriggs; Hedblom; Cotton; Utterback; Hanna; Nguyen; Saudek; et al. (1995). "Whole-genome random sequencing and assembly of Haemophilus influenzae Rd". Science. 269 (5223): 496–512. Bibcode:1995Sci...269..496F. doi:10.1126/science.7542800. PMID 7542800. 
  59. ^ Frederick R. Blattner; Guy Plunkett III; et al. (1997). "The Complete Genome Sequence of Escherichia coli K-12". Science. 277 (5331): 1453–1462. doi:10.1126/science.277.5331.1453. PMID 9278503. 
  60. ^ Challacombe, Jean F.; Eichorst, Stephanie A.; Hauser, Loren; Land, Miriam; Xie, Gary; Kuske, Cheryl R.; Steinke, Dirk (15 September 2011). Steinke, Dirk, ed. "Biological Consequences of Ancient Gene Acquisition and Duplication in the Large Genome of Candidatus Solibacter usitatus Ellin6076". PLoS ONE. 6 (9): e24882. Bibcode:2011PLoSO...624882C. doi:10.1371/journal.pone.0024882. PMC 3174227Freely accessible. PMID 21949776. 
  61. ^ Rocap, G.; Larimer, F. W.; Lamerdin, J.; Malfatti, S.; Chain, P.; Ahlgren, N. A.; Arellano, A.; Coleman, M.; Hauser, L.; Hess, W. R.; Johnson, Z. I.; Land, M.; Lindell, D.; Post, A. F.; Regala, W.; Shah, M.; Shaw, S. L.; Steglich, C.; Sullivan, M. B.; Ting, C. S.; Tolonen, A.; Webb, E. A.; Zinser, E. R.; Chisholm, S. W. (2003). "Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation". Nature. 424 (6952): 1042–7. Bibcode:2003Natur.424.1042R. doi:10.1038/nature01947. PMID 12917642. 
  62. ^ Dufresne, A.; Salanoubat, M.; Partensky, F.; Artiguenave, F.; Axmann, I. M.; Barbe, V.; Duprat, S.; Galperin, M. Y.; Koonin, E. V.; Le Gall, F.; Makarova, K. S.; Ostrowski, M.; Oztas, S.; Robert, C.; Rogozin, I. B.; Scanlan, D. J.; De Marsac, N. T.; Weissenbach, J.; Wincker, P.; Wolf, Y. I.; Hess, W. R. (2003). "Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome". Proceedings of the National Academy of Sciences. 100 (17): 10020–5. Bibcode:2003PNAS..10010020D. doi:10.1073/pnas.1733211100. PMC 187748Freely accessible. PMID 12917486. 
  63. ^ Meeks, J. C.; Elhai, J; Thiel, T; Potts, M; Larimer, F; Lamerdin, J; Predki, P; Atlas, R (2001). "An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium". Photosynthesis Research. 70 (1): 85–106. doi:10.1023/A:1013840025518. PMID 16228364. 
  64. ^ Parfrey LW; Lahr DJG; Katz LA (2008). "The Dynamic Nature of Eukaryotic Genomes". Molecular Biology and Evolution. 25 (4): 787–94. doi:10.1093/molbev/msn032. PMC 2933061Freely accessible. PMID 18258610. 
  65. ^ ScienceShot: Biggest Genome Ever Archived 11 October 2010 at the Wayback Machine., comments: "The measurement for Amoeba dubia and other protozoa which have been reported to have very large genomes were made in the 1960s using a rough biochemical approach which is now considered to be an unreliable method for accurate genome size determinations."
  66. ^ Anderson, S.; Bankier, A. T.; Barrell, B. G.; de Bruijn, M. H. L.; Coulson, A. R.; Drouin, J.; Eperon, I. C.; Nierlich, D. P.; Roe, B. A.; Sanger, F.; Schreier, P. H.; Smith, A. J. H.; Staden, R.; Young, I. G. (1981). "Sequence and organization of the human mitochondrial genome". Nature. 290 (5806): 457–65. Bibcode:1981Natur.290..457A. doi:10.1038/290457a0. PMID 7219534. 
  67. ^ Fleischmann A; Michael TP; Rivadavia F; Sousa A; Wang W; Temsch EM; Greilhuber J; Müller KF & Heubl G (2014). "Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms". Annals of Botany. 114 (8): 1651–1663. doi:10.1093/aob/mcu189. PMC 4649684Freely accessible. PMID 25274549. 
  68. ^
  69. ^
  70. ^ Greilhuber J; Borsch T; Müller K; Worberg A; Porembski S & Barthlott W (2006). "Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size". Plant Biology. 8 (6): 770–777. doi:10.1055/s-2006-924101. PMID 17203433. 
  71. ^ Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (Sep 15, 2006). "The genome of black cottonwood, Populus trichocarpa (Torr. & Gray)". Science. 313 (5793): 1596–604. Bibcode:2006Sci...313.1596T. doi:10.1126/science.1128691. PMID 16973872. 
  72. ^ PELLICER, JAUME; FAY, MICHAEL F.; LEITCH, ILIA J. (15 September 2010). "The largest eukaryotic genome of them all?". Botanical Journal of the Linnean Society. 164 (1): 10–15. doi:10.1111/j.1095-8339.2010.01072.x. 
  73. ^ Lang D; Zimmer AD; Rensing SA; Reski R (October 2008). "Exploring plant biodiversity: the Physcomitrella genome and beyond". Trends Plant Sci. 13 (10): 542–549. doi:10.1016/j.tplants.2008.07.002. PMID 18762443. 
  74. ^ "Saccharomyces Genome Database". Retrieved 27 January 2011. 
  75. ^ Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Baştürkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D'Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Peñalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW (2005). "Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae". Nature. 438 (7071): 1105–15. Bibcode:2005Natur.438.1105G. doi:10.1038/nature04341. PMID 16372000. 
  76. ^ Leroy, S.; Bouamer, S.; Morand, S.; Fargette, M. (2007). "Genome size of plant-parasitic nematodes". Nematology. 9: 449–450. doi:10.1163/156854107781352089. 
  77. ^ Gregory TR (2005). "Animal Genome Size Database". Gregory, T.R. (2016). Animal Genome Size Database. 
  78. ^ The C. elegans Sequencing Consortium (1998). "Genome sequence of the nematode C. elegans: a platform for investigating biology". Science. 282 (5396): 2012–2018. doi:10.1126/science.282.5396.2012. PMID 9851916. 
  79. ^ Ellis LL; Huang W; Quinn AM; et al. (2014). "Intrapopulation Genome Size Variation in "Drosophila melanogaster" Reflects Life History Variation and Plasticity". PLoS Genetics. 10 (7): e1004522. doi:10.1371/journal.pgen.1004522. PMC 4109859Freely accessible. PMID 25057905. Retrieved 17 March 2016. 
  80. ^ Honeybee Genome Sequencing Consortium; Weinstock; Robinson; Gibbs; Weinstock; Weinstock; Robinson; Worley; Evans; Maleszka; Robertson; Weaver; Beye; Bork; Elsik; Evans; Hartfelder; Hunt; Robertson; Robinson; Maleszka; Weinstock; Worley; Zdobnov; Hartfelder; Amdam; Bitondi; Collins; Cristino; Evans (October 2006). "Insights into social insects from the genome of the honeybee Apis mellifera". Nature. 443 (7114): 931–49. Bibcode:2006Natur.443..931T. doi:10.1038/nature05260. PMC 2048586Freely accessible. PMID 17073008. 
  81. ^ The International Silkworm Genome (2008). "The genome of a lepidopteran model insect, the silkworm Bombyx mori". Insect Biochemistry and Molecular Biology. 38 (12): 1036–1045. doi:10.1016/j.ibmb.2008.11.004. PMID 19121390. 
  82. ^ Wurm Y; Wang, J.; Riba-Grognuz, O.; Corona, M.; Nygaard, S.; Hunt, B. G.; Ingram, K. K.; Falquet, L.; Nipitwattanaphon, M.; Gotzek, D.; Dijkstra, M. B.; Oettler, J.; Comtesse, F.; Shih, C.-J.; Wu, W.-J.; Yang, C.-C.; Thomas, J.; Beaudoing, E.; Pradervand, S.; Flegel, V.; Cook, E. D.; Fabbretti, R.; Stockinger, H.; Long, L.; Farmerie, W. G.; Oakey, J.; Boomsma, J. J.; Pamilo, P.; Yi, S. V.; et al. (2011). "The genome of the fire ant Solenopsis invicta". PNAS. 108 (14): 5679–5684. Bibcode:2011PNAS..108.5679W. doi:10.1073/pnas.1009690108. PMC 3078418Freely accessible. PMID 21282665. Retrieved 1 February 2011. 
  83. ^ Church, DM; Goodstadt, L; Hillier, LW; Zody, MC; Goldstein, S; She, X; Bult, CJ; Agarwala, R; Cherry, JL; DiCuccio, M; Hlavina, W; Kapustin, Y; Meric, P; Maglott, D; Birtle, Z; Marques, AC; Graves, T; Zhou, S; Teague, B; Potamousis, K; Churas, C; Place, M; Herschleb, J; Runnheim, R; Forrest, D; Amos-Landgraf, J; Schwartz, DC; Cheng, Z; Lindblad-Toh, K; Eichler, EE; Ponting, CP; Mouse Genome Sequencing, Consortium (May 5, 2009). Roberts, Richard J, ed. "Lineage-specific biology revealed by a finished genome assembly of the mouse". PLoS Biology. 7 (5): e1000112. doi:10.1371/journal.pbio.1000112. PMC 2680341Freely accessible. PMID 19468303. 
  84. ^ "Human Genome Project Information Site Has Been Updated". 2013-07-23. Retrieved 6 February 2014. 
  85. ^ Venter, J. C.; Adams, M.; Myers, E.; Li, P.; Mural, R.; Sutton, G.; Smith, H.; Yandell, M.; Evans, C.; Holt, R. A.; Gocayne, J. D.; Amanatides, P.; Ballew, R. M.; Huson, D. H.; Wortman, J. R.; Zhang, Q.; Kodira, C. D.; Zheng, X. H.; Chen, L.; Skupski, M.; Subramanian, G.; Thomas, P. D.; Zhang, J.; Gabor Miklos, G. L.; Nelson, C.; Broder, S.; Clark, A. G.; Nadeau, J.; McKusick, V. A.; Zinder, N. (2001). "The Sequence of the Human Genome". Science. 291 (5507): 1304–1351. Bibcode:2001Sci...291.1304V. doi:10.1126/science.1058040. PMID 11181995. 
  86. ^ "Pan paniscus (pygmy chimpanzee)". Retrieved 30 June 2016. 
  87. ^ Crollius, HR; Jaillon, O; Dasilva, C; Ozouf-Costaz, C; Fizames, C; Fischer, C; Bouneau, L; Billault, A; Quetier, F; Saurin, W; Bernot, A; Weissenbach, J (2000). "Characterization and Repeat Analysis of the Compact Genome of the Freshwater Pufferfish Tetraodon nigroviridis". Genome Research. 10 (7): 939–949. doi:10.1101/gr.10.7.939. PMC 310905Freely accessible. PMID 10899143. 
  88. ^ Olivier Jaillon; et al. (21 October 2004). "Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype". Nature. 431 (7011): 946–957. Bibcode:2004Natur.431..946J. doi:10.1038/nature03025. PMID 15496914. 
  89. ^ "Tetraodon Project Information". Archived from the original on 26 September 2012. Retrieved 17 October 2012. 
  90. ^ M. Hosseini, D. Pratas, A. J. Pinho. A Survey on Data Compression Methods for Biological Sequences. information 7 (4), 56, 2016
  91. ^ a b Pratas, D., Pinho, A. J., and Ferreira, P. J. S. G. Efficient compression of genomic sequences. Data Compression Conference, Snowbird, Utah, 2016.
  92. ^ Deorowicz, S., and S. Grabowski. 2011. Robust relative compression of genomes with random access. Bioinformatics 27(21): 2979-2986.
  93. ^ Wang, C., and D. Zhang. 2011. A novel compression tool for efficient storage of genome resequencing data. Nucleic Acids Res 39(7): e45.
  94. ^ Pinho, A. J., D. Pratas, and S. P. Garcia. 2012. GReEn: a tool for efficient compression of genome resequencing data. Nucleic Acids Res 40(4): e27.
  95. ^ Tembe, W., J. Lowey, and E. Suh. 2010. G-SQZ: Compact encoding of genomic sequence and quality data. Bioinformatics 26(17): 2192-2194.
  96. ^ Christley, S., Y. Lu, C. Li, and X. Xie. 2009. Human genomics as email attachments. Bioinformatics 25(2): 274-275.
  97. ^ Pavlichin, D.S., Weissman, T., and G. Yona. 2013. The human genome contracts again. Bioinformatics 29(17): 2199-2202.
  98. ^ Martincorena, Iñigo (25 Sep 2015). "Somatic mutation in cancer and normal cells". Science. 349 (6255): 1483–1489. doi:10.1126/science.aab4082. Retrieved 11 November 2017. 
  99. ^ Witzany G (June 2011) The agents of natural genome editing. J Mol Cell Biol 3: 181-189. doi: 10.1093/jmcb/mjr005.
  100. ^ Rotten Tomatoes  Missing or empty |title= (help)

Further reading[edit]

  • Benfey, P.; Protopapas, A.D. (2004). Essentials of Genomics. Prentice Hall. 
  • Brown, Terence A. (2002). Genomes 2. Oxford: Bios Scientific Publishers. ISBN 978-1-85996-029-5. 
  • Gibson, Greg; Muse, Spencer V. (2004). A Primer of Genome Science (Second ed.). Sunderland, Mass: Sinauer Assoc. ISBN 0-87893-234-8. 
  • Gregory (2005). T. Ryan, ed. The Evolution of the Genome. Elsevier. ISBN 0-12-301463-8. 
  • Reece, Richard J. (2004). Analysis of Genes and Genomes. Chichester: John Wiley & Sons. ISBN 0-470-84379-9. 
  • Saccone, Cecilia; Pesole, Graziano (2003). Handbook of Comparative Genomics. Chichester: John Wiley & Sons. ISBN 0-471-39128-X. 
  • Werner, E. (2003). "In silico multicellular systems biology and minimal genomes". Drug Discov Today. 8 (24): 1121–1127. doi:10.1016/S1359-6446(03)02918-0. PMID 14678738. 

External links[edit]


None of the audio/visual content is hosted on this site. All media is embedded from other sites such as GoogleVideo, Wikipedia, YouTube etc. Therefore, this site has no control over the copyright issues of the streaming media.

All issues concerning copyright violations should be aimed at the sites hosting the material. This site does not host any of the streaming media and the owner has not uploaded any of the material to the video hosting servers. Anyone can find the same content on Google Video or YouTube by themselves.

The owner of this site cannot know which documentaries are in public domain, which has been uploaded to e.g. YouTube by the owner and which has been uploaded without permission. The copyright owner must contact the source if he wants his material off the Internet completely.

Powered by YouTube
Wikipedia content is licensed under the GFDL and (CC) license