Play Video
1
Geometric Series and the Test for Divergence - Part 1
Geometric Series and the Test for Divergence - Part 1
::2008/04/12::
Play Video
2
Geometric series
Geometric series
::2013/11/08::
Play Video
3
Geometric Series
Geometric Series
::2010/08/29::
Play Video
4
Sum of an Infinite Geometric Series, Ex 1
Sum of an Infinite Geometric Series, Ex 1
::2011/07/01::
Play Video
5
Intro to Geometric Series part 1
Intro to Geometric Series part 1
::2009/03/13::
Play Video
6
Formula for finite geometric series
Formula for finite geometric series
::2013/02/16::
Play Video
7
Convergence and sum of a geometric series, example 1
Convergence and sum of a geometric series, example 1
::2010/10/19::
Play Video
8
Sum of an infinite geometric series
Sum of an infinite geometric series
::2013/11/08::
Play Video
9
Geometric series convergence and divergence examples
Geometric series convergence and divergence examples
::2013/11/08::
Play Video
10
Geometric Series (How to Find the Sum of a Sequence)
Geometric Series (How to Find the Sum of a Sequence)
::2012/01/31::
Play Video
11
Infinite Sum Geometric Series
Infinite Sum Geometric Series
::2012/03/15::
Play Video
12
Infinite Geometric Series
Infinite Geometric Series
::2010/09/29::
Play Video
13
Sum of an Infinite Geometric Series, Ex 2
Sum of an Infinite Geometric Series, Ex 2
::2011/07/01::
Play Video
14
Geometric Series - Proof of the Sum of the first n terms : ExamSolutions
Geometric Series - Proof of the Sum of the first n terms : ExamSolutions
::2010/03/09::
Play Video
15
Convergence of a geometric series
Convergence of a geometric series
::2014/03/08::
Play Video
16
Infinite Geometric Series
Infinite Geometric Series
::2010/08/29::
Play Video
17
Geometric Series
Geometric Series
::2012/05/24::
Play Video
18
Writing a Geometric Series using Sigma / Summation Notation
Writing a Geometric Series using Sigma / Summation Notation
::2011/07/01::
Play Video
19
Geometric Series - Expressing a Decimal as a Rational Number
Geometric Series - Expressing a Decimal as a Rational Number
::2009/02/13::
Play Video
20
8.2 Finding the sum of a finite geometric series
8.2 Finding the sum of a finite geometric series
::2012/11/30::
Play Video
21
Geometric Series and the Test for Divergence - Part 2
Geometric Series and the Test for Divergence - Part 2
::2009/01/14::
Play Video
22
Geometric Series : C2 Edexcel January 2013 Q3(c) : ExamSolutions Maths Revision
Geometric Series : C2 Edexcel January 2013 Q3(c) : ExamSolutions Maths Revision
::2013/05/13::
Play Video
23
Calculus 2 Lecture 9.2:  Series, Geometric Series, Harmonic Series, and Divergence Test
Calculus 2 Lecture 9.2: Series, Geometric Series, Harmonic Series, and Divergence Test
::2014/03/27::
Play Video
24
Geometric Series - Bouncing Ball
Geometric Series - Bouncing Ball
::2011/11/04::
Play Video
25
Geometric Series Finite Sum.
Geometric Series Finite Sum.
::2012/04/24::
Play Video
26
Writing a Geometric Series using Sigma / Summation Notation, Ex 2
Writing a Geometric Series using Sigma / Summation Notation, Ex 2
::2011/07/01::
Play Video
27
Geometric Series Formula (TANTON Mathematics)
Geometric Series Formula (TANTON Mathematics)
::2010/07/07::
Play Video
28
Another derivation of the sum of an infinite geometric series
Another derivation of the sum of an infinite geometric series
::2013/11/08::
Play Video
29
Sum of an Infinite Geometric Series, Ex 3
Sum of an Infinite Geometric Series, Ex 3
::2011/07/01::
Play Video
30
Introduction to Geometric Sequences -Geometric Series - Geometric Progression
Introduction to Geometric Sequences -Geometric Series - Geometric Progression
::2011/06/29::
Play Video
31
Algebra 2 - Geometric Series
Algebra 2 - Geometric Series
::2010/05/17::
Play Video
32
Constructing a geometric series for new users
Constructing a geometric series for new users
::2013/12/23::
Play Video
33
Geometric Series - Sum to Infinity : ExamSolutions
Geometric Series - Sum to Infinity : ExamSolutions
::2010/03/10::
Play Video
34
Ex 1: Find the Partial Sum of a Geometric Series
Ex 1: Find the Partial Sum of a Geometric Series
::2012/08/17::
Play Video
35
A Level Maths - C2 Geometric Series
A Level Maths - C2 Geometric Series
::2011/07/09::
Play Video
36
Function as geometric series
Function as geometric series
::2013/11/27::
Play Video
37
Geometric Series : C2 Edexcel June 2012 Q9(b)(c)(d) : ExamSolutions Maths Tutorials
Geometric Series : C2 Edexcel June 2012 Q9(b)(c)(d) : ExamSolutions Maths Tutorials
::2013/01/12::
Play Video
38
How to do Geometric Series Part 1.wmv
How to do Geometric Series Part 1.wmv
::2010/01/14::
Play Video
39
Values for which the geometric series converges
Values for which the geometric series converges
::2014/03/02::
Play Video
40
Convergence and sum of a geometric series, example 2
Convergence and sum of a geometric series, example 2
::2010/07/07::
Play Video
41
Geometric Series / Sequence : Example (1) : ExamSolutions
Geometric Series / Sequence : Example (1) : ExamSolutions
::2011/08/09::
Play Video
42
Sum of a Geometric Series
Sum of a Geometric Series
::2010/12/13::
Play Video
43
Geometric Series : C2 Edexcel January 2012 Q1 : ExamSolutions Maths Revision
Geometric Series : C2 Edexcel January 2012 Q1 : ExamSolutions Maths Revision
::2014/02/17::
Play Video
44
Repeating decimal as infinite geometric series
Repeating decimal as infinite geometric series
::2013/11/08::
Play Video
45
Sequences Part 3 - Arithmetic and Geometric Sequences and Series
Sequences Part 3 - Arithmetic and Geometric Sequences and Series
::2011/04/08::
Play Video
46
Infinite Geometric Series
Infinite Geometric Series
::2011/06/28::
Play Video
47
Geometric Sequences and Series (1 of 2)
Geometric Sequences and Series (1 of 2)
::2011/05/23::
Play Video
48
Geometric series sum to figure out mortgage payments
Geometric series sum to figure out mortgage payments
::2010/03/30::
Play Video
49
Free Math Lessons Infinite Geometric Series
Free Math Lessons Infinite Geometric Series
::2011/01/26::
Play Video
50
Calculating Infinite Geometric Series
Calculating Infinite Geometric Series
::2011/11/04::
NEXT >>
RESULTS [51 .. 101]
From Wikipedia, the free encyclopedia
Jump to: navigation, search
Each of the purple squares has 1/4 of the area of the next larger square (1/2×1/2 = 1/4, 1/4×1/4 = 1/16, etc.). The sum of the areas of the purple squares is one third of the area of the large square.

In mathematics, a geometric series is a series with a constant ratio between successive terms. For example, the series

\frac{1}{2} \,+\, \frac{1}{4} \,+\, \frac{1}{8} \,+\, \frac{1}{16} \,+\, \cdots

is geometric, because each successive term can be obtained by multiplying the previous term by 1/2.

Geometric series are one of the simplest examples of infinite series with finite sums, although not all of them have this property. Historically, geometric series played an important role in the early development of calculus, and they continue to be central in the study of convergence of series. Geometric series are used throughout mathematics, and they have important applications in physics, engineering, biology, economics, computer science, queueing theory, and finance.

Common ratio[edit]

The terms of a geometric series form a geometric progression, meaning that the ratio of successive terms in the series is constant. This relationship allows for the representation of a geometric series using only two terms, r and a. The term r is the common ratio, and a is the first term of the series. As an example the geometric series given in the introduction,

\frac{1}{2} \,+\, \frac{1}{4} \,+\, \frac{1}{8} \,+\, \frac{1}{16} \,+\, \cdots

may simply be written as

 a + a r + a r^2 + a r^3 +  \cdots , with  r = \frac{1}{2} and  a = \frac{1}{2} .

The following table shows several geometric series with different common ratios:

Common ratio, r Start term, a Example series
10 4 4 + 40 + 400 + 4000 + 40,000 + ···
1/3 9 9 + 3 + 1 + 1/3 + 1/9 + ···
1/10 7 7 + 0.7 + 0.07 + 0.007 + 0.0007 + ···
1 3 3 + 3 + 3 + 3 + 3 + ···
−1/2 1 1 − 1/2 + 1/4 − 1/8 + 1/16 − 1/32 + ···
–1 3 3 − 3 + 3 − 3 + 3 − ···

The behavior of the terms depends on the common ratio r:

If r is between −1 and +1, the terms of the series become smaller and smaller, approaching zero in the limit and the series converges to a sum. In the case above, where r is one half, the series has the sum one.
If r is greater than one or less than minus one the terms of the series become larger and larger in magnitude. The sum of the terms also gets larger and larger, and the series has no sum. (The series diverges.)
If r is equal to one, all of the terms of the series are the same. The series diverges.
If r is minus one the terms take two values alternately (e.g. 2, −2, 2, −2, 2,... ). The sum of the terms oscillates between two values (e.g. 2, 0, 2, 0, 2,... ). This is a different type of divergence and again the series has no sum. See for example Grandi's series: 1 − 1 + 1 − 1 + ···.

Sum[edit]

The sum of a geometric series is finite as long as the absolute value of the ratio is less than 1; as the numbers near zero, they become insignificantly small, allowing a sum to be calculated despite the series containing infinitely-many terms. The sum can be computed using the self-similarity of the series.

Example[edit]

A self-similar illustration of the sum s. Removing the largest circle results in a similar figure of 2/3 the original size.

Consider the sum of the following geometric series:

s \;=\; 1 \,+\, \frac{2}{3} \,+\, \frac{4}{9} \,+\, \frac{8}{27} \,+\, \cdots

This series has common ratio 2/3. If we multiply through by this common ratio, then the initial 1 becomes a 2/3, the 2/3 becomes a 4/9, and so on:

\frac{2}{3}s \;=\; \frac{2}{3} \,+\, \frac{4}{9} \,+\, \frac{8}{27} \,+\, \frac{16}{81} \,+\, \cdots

This new series is the same as the original, except that the first term is missing. Subtracting the new series (2/3)s from the original series s cancels every term in the original but the first:

s \,-\, \frac{2}{3}s \;=\; 1,\;\;\;\mbox{so }s=3.

A similar technique can be used to evaluate any self-similar expression.

Formula[edit]

For r\neq 1, the sum of the first n terms of a geometric series is:

a + ar + a r^2 + a r^3 + \cdots + a r^{n-1} = \sum_{k=0}^{n-1} ar^k= a \, \frac{1-r^{n}}{1-r},

where a is the first term of the series, and r is the common ratio. We can derive this formula as follows:


\begin{align}
&\text{Let }s = a + ar + ar^2 + ar^3 + \cdots + ar^{n-1}. \\[4pt]
&\text{Then }rs = ar + ar^2 + ar^3 + ar^4 + \cdots + ar^{n}  \\[4pt]
&\text{Then }s - rs = a-ar^{n}  \\[4pt]
&\text{Then }s(1-r) = a(1-r^{n}),\text{ so }s = a \frac{1-r^{n}}{1-r} \quad \text{(if } r \neq 1 \text{)}.
\end{align}

As n goes to infinity, the absolute value of r must be less than one for the series to converge. The sum then becomes

a+ar+ar^2+ar^3+ar^4+\cdots = \sum_{k=0}^\infty ar^k = \frac{a}{1-r} \Leftrightarrow |r|<1

When a = 1, this simplifies to:

1 \,+\, r \,+\, r^2 \,+\, r^3 \,+\, \cdots \;=\; \frac{1}{1-r},

the left-hand side being a geometric series with common ratio r. We can derive this formula:


\begin{align}
&\text{Let }s = 1 + r + r^2 + r^3 + \cdots. \\[4pt]
&\text{Then }rs = r + r^2 + r^3 + \cdots. \\[4pt]
&\text{Then }s - rs = 1,\text{ so }s(1 - r) = 1,\text{ and thus }s = \frac{1}{1-r}.
\end{align}

The general formula follows if we multiply through by a.

The formula holds true for complex "r", with the same restrictions (modulus of "r" is strictly less than one).

Proof of convergence[edit]

We can prove that the geometric series converges using the sum formula for a geometric progression:

\begin{align}
&1 \,+\, r \,+\, r^2 \,+\, r^3 \,+\, \cdots \\[3pt]
&=\; \lim_{n\rightarrow\infty} \left(1 \,+\, r \,+\, r^2 \,+\, \cdots \,+\, r^n\right) \\
&=\; \lim_{n\rightarrow\infty} \frac{1-r^{n+1}}{1-r}
\end{align}

Since (1 + r + r2 + ... + rn)(1−r) = 1−rn+1 and rn+1 → 0 for | r | < 1.

Convergence of geometric series can also be demonstrated by rewriting the series as an equivalent telescoping series. Consider the function:

\begin{align}
g(K) = \frac{r^{K+1}}{1-r}
\end{align}

Note that:

\begin{align}
r = g(0) - g(1), r^2 = g(1) - g(2), r^3 = g(2) - g(3), \cdots 
\end{align}

Thus:

\begin{align}
S = r + r^2 + r^3 + . . . = (g(0) - g(1)) + (g(1) - g(2)) + (g(2) - g(3)) + \cdots 
\end{align}

If

\begin{align}
\left | r  \right \vert <1
\end{align}

then

\begin{align} 
g(K)\longrightarrow 0  \text{ as} K \to \infty
\end{align}

So S converges to

\begin{align}
g(0) = \frac{r}{1-r}.
\end{align}

Generalized formula[edit]

For r\neq 1, the sum of the first n terms of a geometric series is:

\sum_{k=a}^{b} r^k = \frac{r^{a}-r^{b+1}}{1-r},

where a,b \in \mathbb{N}.

We can derive this formula as follows:

we put b=n-1 \Rightarrow n=b+1

\sum_{k=a}^{b} r^k = \sum_{k=0}^{n-1} r^k - \sum_{k=0}^{a-1} r^k = \frac{1-r^n}{1-r} - \frac{1-r^a}{1-r}


= \frac{1-r^n-1+r^a}{1-r} =
\frac{r^a - r^{b+1}}{1-r}

Applications[edit]

Repeating decimals[edit]

A repeating decimal can be thought of as a geometric series whose common ratio is a power of 1/10. For example:

0.7777\ldots \;=\; \frac{7}{10} \,+\, \frac{7}{100} \,+\, \frac{7}{1000} \,+\, \frac{7}{10000} \,+\, \cdots.

The formula for the sum of a geometric series can be used to convert the decimal to a fraction:

0.7777\ldots \;=\; \frac{a}{1-r} \;=\; \frac{7/10}{1-1/10} \;=\; \frac{7}{9}.

The formula works not only for a single repeating figure, but also for a repeating group of figures. For example:

0.123412341234\ldots \;=\; \frac{a}{1-r} \;=\; \frac{1234/10000}{1-1/10000} \;=\; \frac{1234}{9999}.

Note that every series of repeating consecutive decimals can be conveniently simplified with the following:

0.09090909\ldots \;=\; \frac{09}{99} \;=\; \frac{1}{11}.
0.143814381438\ldots \;=\; \frac{1438}{9999}.
0.9999\ldots \;=\; \frac{9}{9} \;=\; 1.

That is, a repeating decimal with repeat length n is equal to the quotient of the repeating part (as an integer) and 10n - 1.

Archimedes' quadrature of the parabola[edit]

Archimedes' dissection of a parabolic segment into infinitely many triangles

Archimedes used the sum of a geometric series to compute the area enclosed by a parabola and a straight line. His method was to dissect the area into an infinite number of triangles.

Archimedes' Theorem states that the total area under the parabola is 4/3 of the area of the blue triangle.

Archimedes determined that each green triangle has 1/8 the area of the blue triangle, each yellow triangle has 1/8 the area of a green triangle, and so forth.

Assuming that the blue triangle has area 1, the total area is an infinite sum:

1 \,+\, 2\left(\frac{1}{8}\right) \,+\, 4\left(\frac{1}{8}\right)^2 \,+\, 8\left(\frac{1}{8}\right)^3 \,+\, \cdots.

The first term represents the area of the blue triangle, the second term the areas of the two green triangles, the third term the areas of the four yellow triangles, and so on. Simplifying the fractions gives

1 \,+\, \frac{1}{4} \,+\, \frac{1}{16} \,+\, \frac{1}{64} \,+\, \cdots.

This is a geometric series with common ratio 1/4 and the fractional part is equal to 1/3:

\sum_{n=0}^\infty 4^{-n} = 1 + 4^{-1} + 4^{-2} + 4^{-3} + \cdots = {4\over 3}. \;

The sum is

\frac{1}{1 -r}\;=\;\frac{1}{1 -\frac{1}{4}}\;=\;\frac{4}{3}.    Q.E.D.

This computation uses the method of exhaustion, an early version of integration. In modern calculus, the same area could be found using a definite integral.

Fractal geometry[edit]

The interior of the Koch snowflake is a union of infinitely many triangles.

In the study of fractals, geometric series often arise as the perimeter, area, or volume of a self-similar figure.

For example, the area inside the Koch snowflake can be described as the union of infinitely many equilateral triangles (see figure). Each side of the green triangle is exactly 1/3 the size of a side of the large blue triangle, and therefore has exactly 1/9 the area. Similarly, each yellow triangle has 1/9 the area of a green triangle, and so forth. Taking the blue triangle as a unit of area, the total area of the snowflake is

1 \,+\, 3\left(\frac{1}{9}\right) \,+\, 12\left(\frac{1}{9}\right)^2 \,+\, 48\left(\frac{1}{9}\right)^3 \,+\, \cdots.

The first term of this series represents the area of the blue triangle, the second term the total area of the three green triangles, the third term the total area of the twelve yellow triangles, and so forth. Excluding the initial 1, this series is geometric with constant ratio r = 4/9. The first term of the geometric series is a = 3(1/9) = 1/3, so the sum is

1\,+\,\frac{a}{1-r}\;=\;1\,+\,\frac{\frac{1}{3}}{1-\frac{4}{9}}\;=\;\frac{8}{5}.

Thus the Koch snowflake has 8/5 of the area of the base triangle.

Zeno's paradoxes[edit]

The convergence of a geometric series reveals that a sum involving an infinite number of summands can indeed be finite, and so allows one to resolve many of Zeno's paradoxes. For example, Zeno's dichotomy paradox maintains that movement is impossible, as one can divide any finite path into an infinite number of steps wherein each step is taken to be half the remaining distance. Zeno's mistake is in the assumption that the sum of an infinite number of finite steps cannot be finite. This is of course not true, as evidenced by the convergence of the geometric series with r = 1/2.

Euclid[edit]

Book IX, Proposition 35[1] of Euclid's Elements expresses the partial sum of a geometric series in terms of members of the series. It is equivalent to the modern formula.

Economics[edit]

In economics, geometric series are used to represent the present value of an annuity (a sum of money to be paid in regular intervals).

For example, suppose that a payment of $100 will be made to the owner of the annuity once per year (at the end of the year) in perpetuity. Receiving $100 a year from now is worth less than an immediate $100, because one cannot invest the money until one receives it. In particular, the present value of $100 one year in the future is $100 / (1 + I ), where I is the yearly interest rate.

Similarly, a payment of $100 two years in the future has a present value of $100 / (1 + I)2 (squared because two years' worth of interest is lost by not receiving the money right now). Therefore, the present value of receiving $100 per year in perpetuity is

\sum_{n=1}^\infty \frac{\$100}{(1+I)^n},

which is the infinite series:

\frac{\$ 100}{(1+I)} \,+\, \frac{\$ 100}{(1+I)^2} \,+\, \frac{\$ 100}{(1+I)^3} \,+\, \frac{\$ 100}{(1+I)^4} \,+\, \cdots.

This is a geometric series with common ratio 1 / (1 + I ). The sum is the first term divided by (one minus the common ratio):

\frac{\$ 100/(1+I)}{1 - 1/(1+I)} \;=\; \frac{\$ 100}{I}.

For example, if the yearly interest rate is 10% (I = 0.10), then the entire annuity has a present value of $100 / 0.10 = $1000.

This sort of calculation is used to compute the APR of a loan (such as a mortgage loan). It can also be used to estimate the present value of expected stock dividends, or the terminal value of a security.

Geometric power series[edit]

The formula for a geometric series

\frac{1}{1-x}=1+x+x^2+x^3+x^4+\cdots

can be interpreted as a power series in the Taylor's theorem sense, converging where |x|<1. From this, one can extrapolate to obtain other power series. For example,


\begin{align}
\tan^{-1}(x)&=\int\frac{dx}{1+x^2}=\int\frac{dx}{1-(-x^2)}=\int\left(1 + \left(-x^2\right) + \left(-x^2\right)^2 + \left(-x^2\right)^3 + \cdots\right)dx\\
&=\int\left(1-x^2+x^4-x^6+\cdots\right)dx=x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+\cdots=\sum^{\infty}_{n=0} \frac{(-1)^n}{2n+1} x^{2n+1}
\end{align}

By differentiating the geometric series, one obtains the variant

\frac{1}{(1-x)^2} = \sum^{\infty}_{n=1}n x^{n-1}\quad\text{ for }|x| < 1.

See also[edit]

Specific geometric series[edit]

References[edit]

  1. ^ "Euclid's Elements, Book IX, Proposition 35". Aleph0.clarku.edu. Retrieved 2013-08-01. 


  • James Stewart (2002). Calculus, 5th ed., Brooks Cole. ISBN 978-0-534-39339-7
  • Larson, Hostetler, and Edwards (2005). Calculus with Analytic Geometry, 8th ed., Houghton Mifflin Company. ISBN 978-0-618-50298-1
  • Roger B. Nelsen (1997). Proofs without Words: Exercises in Visual Thinking, The Mathematical Association of America. ISBN 978-0-88385-700-7
  • Andrews, George E. (1998). "The geometric series in calculus". The American Mathematical Monthly (Mathematical Association of America) 105 (1): 36–40. doi:10.2307/2589524. JSTOR 2589524. 

History and philosophy[edit]

  • C. H. Edwards, Jr. (1994). The Historical Development of the Calculus, 3rd ed., Springer. ISBN 978-0-387-94313-8.
  • Swain, Gordon and Thomas Dence (April 1998). "Archimedes' Quadrature of the Parabola Revisited". Mathematics Magazine 71 (2): 123–30. doi:10.2307/2691014. JSTOR 2691014. 
  • Eli Maor (1991). To Infinity and Beyond: A Cultural History of the Infinite, Princeton University Press. ISBN 978-0-691-02511-7
  • Morr Lazerowitz (2000). The Structure of Metaphysics (International Library of Philosophy), Routledge. ISBN 978-0-415-22526-7

Economics[edit]

Biology[edit]

  • Edward Batschelet (1992). Introduction to Mathematics for Life Scientists, 3rd ed., Springer. ISBN 978-0-387-09648-3
  • Richard F. Burton (1998). Biology by Numbers: An Encouragement to Quantitative Thinking, Cambridge University Press. ISBN 978-0-521-57698-7

Computer science[edit]

  • John Rast Hubbard (2000). Schaum's Outline of Theory and Problems of Data Structures With Java, McGraw-Hill. ISBN 978-0-07-137870-3

External links[edit]

Wikipedia content is licensed under the GFDL License
Powered by YouTube
LEGAL
  • Mashpedia © 2014