Joule  

Unit system  SI derived unit 
Unit of  Energy 
Symbol  J 
Named after  James Prescott Joule 
Unit conversions  
1 J in ...  ... is equal to ... 
SI base units  kg⋅m^{2}⋅s^{−2} 
CGS units  ×10^{7} 1erg 
kilowatt hours  ×10^{−7} kW⋅h 2.78 
kilocalories (thermochemical)  ×10^{−4} kcal_{th} 2.390 
BTUs  ×10^{−4} BTU 9.48 
electronvolts  ×10^{18} eV 6.24 
The joule (/ˈdʒuːl/); symbol: J), is a derived unit of energy in the International System of Units.^{[1]} It is equal to the energy transferred to (or work done on) an object when a force of one newton acts on that object in the direction of its motion through a distance of one metre (1 newton metre or N⋅m). It is also the energy dissipated as heat when an electric current of one ampere passes through a resistance of one ohm for one second. It is named after the English physicist James Prescott Joule (1818–1889).^{[2]}^{[3]}^{[4]}
In terms firstly of base SI units and then in terms of other SI units:
where kg is the kilogram, m is the metre, s is the second, N is the newton, Pa is the pascal, W is the watt, C is the coulomb, and V is the volt.
One joule can also be defined as:
This SI unit is named after James Prescott Joule. As with every International System of Units (SI) unit named for a person, the first letter of its symbol is upper case (J). However, when an SI unit is spelled out in English, it should always begin with a lower case letter (joule)—except in a situation where any word in that position would be capitalized, such as at the beginning of a sentence or in material using title case. Note that "degree Celsius" conforms to this rule because the "d" is lowercase.— Based on The International System of Units, section 5.2.
In mechanics, the concept of force (in some direction) has a close analog in the concept of torque (about some angle):
Linear  Angular 

force  torque 
mass  moment of inertia 
distance  angle 
A result of this similarity is that the SI unit for torque is the newton metre, which works out algebraically to have the same dimensions as the Joule. But they are not interchangeable. The CGPM has given the unit of energy the name Joule, but has not given the unit of torque any special name, hence it is simply the newton metre (N⋅m) – a compound name derived from its constituent parts.^{[5]} The use of newton metres for torque and joules for energy is helpful to avoid misunderstandings and miscommunications.^{[5]}
The distinction may be seen also in the fact that energy is a scalar – the dot product of a vector force and a vector displacement. By contrast, torque is a vector – the cross product of a distance vector and a force vector. Torque and energy are related to one another by the equation
where E is energy, τ is (the vector magnitude of) torque, and θ is the angle swept (in radians). Since radians are dimensionless, it follows that torque and energy have the same dimensions.
One joule in everyday life represents approximately:
Since the joule is also a wattsecond and the common unit for electricity sales to homes is the kW⋅h (kilowatthour), a kW⋅h is thus 1000 W × 3600 s = 3.6 MJ (megajoules).

The zeptojoule (zJ) is equal to one sextillionth (10^{−21}) of one joule. 160 zeptojoules is about one electronvolt.
The nanojoule (nJ) is equal to one billionth (10^{−9}) of one joule. 160 nanojoules is about the kinetic energy of a flying mosquito.^{[10]}
The microjoule (μJ) is equal to one millionth (10^{−6}) of one joule. The Large Hadron Collider (LHC) produces collisions of the microjoule order (7 TeV) per particle.
The millijoule (mJ) is equal to one thousandth (10^{−3}) of a joule.
The kilojoule (kJ) is equal to one thousand (10^{3}) joules. Nutritional food labels in most countries express energy in kilojoules (kJ).^{[11]}
One square metre of the Earth receives about 1.4 kilojoules of solar radiation every second in full daylight.^{[12]}
The megajoule (MJ) is equal to one million (10^{6}) joules, or approximately the kinetic energy of a one megagram (tonne) vehicle moving at 161 km/h.
The energy required to heat 10 liters of liquid water at constant pressure from 0 °C (32 °F) to 100 °C (212 °F) is approximately 4.2 MJ.
One kilowatt hour of electricity is 3.6 megajoules.
The gigajoule (GJ) is equal to one billion (10^{9}) joules. 6 GJ is about the chemical energy of combusting 1 barrel (159 l) of crude oil.^{[13]} 2 GJ is about the Planck energy unit.
The terajoule (TJ) is equal to one trillion (10^{12}) joules; or about 0.278 GWh (which is often used in energy tables). About 63 TJ of energy was released by the atomic bomb that exploded over Hiroshima.^{[14]} The International Space Station, with a mass of approximately 450 megagrams and orbital velocity of 7.7 km/s,^{[15]} has a kinetic energy of roughly 13 TJ. In 2017 Hurricane Irma was estimated to have a peak wind energy of 112 TJ.^{[16]}^{[17]}
The petajoule (PJ) is equal to one quadrillion (10^{15}) joules. 210 PJ is about 50 megatons of TNT. This is the amount of energy released by the Tsar Bomba, the largest manmade explosion ever.
The exajoule (EJ) is equal to 10^{18} (one quintillion) joules. The 2011 Tōhoku earthquake and tsunami in Japan had 1.41 EJ of energy according to its rating of 9.0 on the moment magnitude scale. Yearly U.S. energy consumption amounts to roughly 94 EJ.
The zettajoule (ZJ) is equal to one sextillion (10^{21}) joules. The human annual global energy consumption is approximately 0.5 ZJ.
The yottajoule (YJ) is equal to one septillion (10^{24}) joules. This is approximately the amount of energy required to heat all the water on Earth by 1 °C. The thermal output of the Sun is approximately 400 YJ per second.
1 joule is equal to:
Units defined exactly in terms of the joule include:
Look up joule in Wiktionary, the free dictionary. 
A derived unit can often be expressed in different ways by combining base units with derived units having special names. Joule, for example, may formally be written newton metre, or kilogram metre squared per second squared. This, however, is an algebraic freedom to be governed by common sense physical considerations; in a given situation some forms may be more helpful than others. In practice, with certain quantities, preference is given to the use of certain special unit names, or combinations of unit names, to facilitate the distinction between different quantities having the same dimension.
None of the audio/visual content is hosted on this site. All media is embedded from other sites such as GoogleVideo, Wikipedia, YouTube etc. Therefore, this site has no control over the copyright issues of the streaming media.
All issues concerning copyright violations should be aimed at the sites hosting the material. This site does not host any of the streaming media and the owner has not uploaded any of the material to the video hosting servers. Anyone can find the same content on Google Video or YouTube by themselves.
The owner of this site cannot know which documentaries are in public domain, which has been uploaded to e.g. YouTube by the owner and which has been uploaded without permission. The copyright owner must contact the source if he wants his material off the Internet completely.