Share
VIDEOS 1 TO 50
How does laser cooling work?
How does laser cooling work?
Published: 2016/03/30
Channel: Physics Girl
Laser Cooling - Sixty Symbols
Laser Cooling - Sixty Symbols
Published: 2010/08/23
Channel: Sixty Symbols
Basics of Laser Cooling
Basics of Laser Cooling
Published: 2014/09/03
Channel: AQC Physics
Lesson23: Laser Cooling!
Lesson23: Laser Cooling!
Published: 2013/03/14
Channel: Steve Spicklemire
Bose-Einstein Condensate - Coldest Place in the Universe
Bose-Einstein Condensate - Coldest Place in the Universe
Published: 2013/11/18
Channel: Muon Ray
Quantum Cooling to (Near) Absolute Zero
Quantum Cooling to (Near) Absolute Zero
Published: 2013/05/01
Channel: 2veritasium
Using Laser Cooling to Mark Time
Using Laser Cooling to Mark Time
Published: 2011/05/20
Channel: Big Think
Bikini + Cooling Laser
Bikini + Cooling Laser
Published: 2016/06/01
Channel: MyAltereeeGO
homemade diy laser cooling systems
homemade diy laser cooling systems
Published: 2010/04/07
Channel: snowman3514
Laser Cooling (extra footage)
Laser Cooling (extra footage)
Published: 2010/08/24
Channel: nottinghamscience
The NIST-F2 Atomic Clock: How does it work?
The NIST-F2 Atomic Clock: How does it work?
Published: 2014/04/03
Channel: National Institute of Standards and Technology
Laser Cooling - From Atomic Clocks to Watching Biomolecules with Steven Chu
Laser Cooling - From Atomic Clocks to Watching Biomolecules with Steven Chu
Published: 2008/01/10
Channel: University of California Television (UCTV)
Laser Cooling (Quiz)
Laser Cooling (Quiz)
Published: 2012/08/13
Channel: Webcast-legacy Departmental
Lia Ying Li talks about laser cooling and quantum physics
Lia Ying Li talks about laser cooling and quantum physics
Published: 2014/11/09
Channel: ScienceGrrl
YTP: William Phillips talks about laser cooling
YTP: William Phillips talks about laser cooling
Published: 2012/11/05
Channel: pthooie
Laser Cooling Fridge Idea
Laser Cooling Fridge Idea
Published: 2016/04/20
Channel: Cordell Younkin
CO2 Laser 60W "MyLaser" - Water Cooling
CO2 Laser 60W "MyLaser" - Water Cooling
Published: 2015/04/27
Channel: Martin Slaný
William D. Phillips: Quantum optics, laser cooling, and the joy of science outreach
William D. Phillips: Quantum optics, laser cooling, and the joy of science outreach
Published: 2016/10/04
Channel: SPIETV
Single Atoms Trapping (animation)
Single Atoms Trapping (animation)
Published: 2013/04/03
Channel: QAO CMU
Laser Cooling - Radia AITOUNY
Laser Cooling - Radia AITOUNY
Published: 2017/02/28
Channel: Radia Aitouny
trailer laser cooling
trailer laser cooling
Published: 2015/03/04
Channel: Laura Garcia Gonzalez
How Doppler Cooling Works
How Doppler Cooling Works
Published: 2012/07/10
Channel: Lauren Ruth
Laser cooled lithium atoms (Centre for Research on Ultra-Cold Systems, UBC)
Laser cooled lithium atoms (Centre for Research on Ultra-Cold Systems, UBC)
Published: 2014/10/27
Channel: Barbara Weber
Laser Cooling Demonstration
Laser Cooling Demonstration
Published: 2013/04/18
Channel: Kirsten Burns
William D. Phillips "Laser cooling & trapping, & Bose-Einstein condensation"
William D. Phillips "Laser cooling & trapping, & Bose-Einstein condensation"
Published: 2012/03/08
Channel: ITAMPhysics
Laser cooling Meaning
Laser cooling Meaning
Published: 2015/04/24
Channel: SDictionary
Laser Cooling
Laser Cooling
Published: 2017/01/02
Channel: Zyad Alzahrani
808 diode laser cooling test
808 diode laser cooling test
Published: 2016/04/13
Channel: Lasers Dragonfly
Laser cooling
Laser cooling
Published: 2012/07/03
Channel: tom6502tom
Eric Hudson, "Sympathetic cooling of molecules with laser-cooled atoms"
Eric Hudson, "Sympathetic cooling of molecules with laser-cooled atoms"
Published: 2013/10/17
Channel: ITAMPhysics
Laser Cooling and Trapping Graduate Texts in Contemporary Physics
Laser Cooling and Trapping Graduate Texts in Contemporary Physics
Published: 2016/10/11
Channel: Remzi Paşa
eBay Chinese CO2 Laser Cutter & Engraver - Water Cooling Tips!
eBay Chinese CO2 Laser Cutter & Engraver - Water Cooling Tips!
Published: 2015/11/24
Channel: DIY3DTECH.com
Welding Torch With Air Cooling/Argon Gas by DOMAIN LASER
Welding Torch With Air Cooling/Argon Gas by DOMAIN LASER
Published: 2015/09/12
Channel: Domain Laser
Doppler Cooling
Doppler Cooling
Published: 2012/05/18
Channel: Lauren Ruth
NIST Unscripted - Bill Phillips
NIST Unscripted - Bill Phillips
Published: 2013/08/26
Channel: National Institute of Standards and Technology
Download Laser Cooling and Trapping Graduate Texts in Contemporary Physics Pdf
Download Laser Cooling and Trapping Graduate Texts in Contemporary Physics Pdf
Published: 2016/10/01
Channel: C. Rathbone
Laser Cooling Fundamental Properties and Applications
Laser Cooling Fundamental Properties and Applications
Published: 2016/09/22
Channel: Early
Laser-cooled Cesium 133 in a Magneto-Optic Trap around 1 microK
Laser-cooled Cesium 133 in a Magneto-Optic Trap around 1 microK
Published: 2014/02/15
Channel: Phil Peterman
Laser Cooling and Trapping Graduate Texts in Contemporary Physics
Laser Cooling and Trapping Graduate Texts in Contemporary Physics
Published: 2016/09/15
Channel: Kerry Maria
Laser-Cooled Atoms in Flight
Laser-Cooled Atoms in Flight
Published: 2017/05/28
Channel: dana anderson
David DeMille , "Laser cooling and slowing of diatomic molecule"
David DeMille , "Laser cooling and slowing of diatomic molecule"
Published: 2012/06/19
Channel: ITAMPhysics
Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science: Eric Cornell
Frontiers in Laser Cooling, Single-Molecule Biophysics and Energy Science: Eric Cornell
Published: 2008/10/03
Channel: Berkeley Lab
Laser Cooling
Laser Cooling
Published: 2012/06/17
Channel: TheComp462
Laser cooled ions in a Penning trap by Prof.Thompson -A-
Laser cooled ions in a Penning trap by Prof.Thompson -A-
Published: 2013/11/22
Channel: AlltheStrings
Download Laser Cooling Fundamental Properties and Applications Pdf
Download Laser Cooling Fundamental Properties and Applications Pdf
Published: 2016/10/01
Channel: C. Rathbone
Download Optical Refrigeration Science and Applications of Laser Cooling of Solids PDF
Download Optical Refrigeration Science and Applications of Laser Cooling of Solids PDF
Published: 2017/01/19
Channel: Rogelio
How laser works
How laser works
Published: 2015/10/07
Channel: Best Channel
Laser Cooling and Trapping Graduate Texts in Contemporary Physics
Laser Cooling and Trapping Graduate Texts in Contemporary Physics
Published: 2016/10/12
Channel: Mrs. Dolgan
www.kocyigitmedikal.com.tr Depilight 808 Diode Laser  Cooling System
www.kocyigitmedikal.com.tr Depilight 808 Diode Laser Cooling System
Published: 2015/02/12
Channel: Koçyiğit Medikal
Affordable Laser Water Chiller Cooler for Hobby Laser like China DCK40III
Affordable Laser Water Chiller Cooler for Hobby Laser like China DCK40III
Published: 2013/08/16
Channel: Mark Ace
NEXT
GO TO RESULTS [51 .. 100]

WIKIPEDIA ARTICLE

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Laser cooling refers to a number of techniques in which atomic and molecular samples are cooled down to near absolute zero through the interaction with one or more laser fields. All laser cooling techniques rely on the fact that when an object (usually an atom) absorbs and re-emits a photon (a particle of light) its momentum changes. For an ensemble of particles, their temperature is proportional to the variance in their velocity. That is, more homogenious velocities among particles corresponds to a lower temperature. Laser cooling techniques combine atomic spectroscopy with the aforementioned mechanical effect of light to compress the velocity distribution of an ensemble of particles, thereby cooling the particles.

Simplified principle of Doppler laser cooling:
1 A stationary atom sees the laser neither red- nor blue-shifted and does not absorb the photon.
2 An atom moving away from the laser sees it red-shifted and does not absorb the photon.
3.1 An atom moving towards the laser sees it blue-shifted and absorbs the photon, slowing the atom.
3.2 The photon excites the atom, moving an electron to a higher quantum state.
3.3 The atom re-emits a photon. As its direction is random, there is no net change in momentum over many absorption-emission cycles.

The first example of laser cooling, and also still the most common method (so much so that it is still often referred to simply as 'laser cooling') is Doppler cooling. Other methods of laser cooling include:

History[edit]

Early attempts at laser cooling[edit]

At the advent of laser cooling techniques, Maxwell’s theory of electromagnetism had already led to the quantification of electromagnetic radiation exerting a force, however it wasn’t until the turn of the twentieth century when studies by Lebedev (1901), Nichols (1901), and Hull (1903) experimentally demonstrated that force.[5] Following that period, in 1933, Frisch exemplified the pressure exerted on atoms by light. Starting in the early 1970s, lasers were then utilized to further explore atom manipulation. The introduction of lasers in atomic manipulation experiments acted as the advent of laser cooling proposals in the mid 1970s. Laser cooling was separately introduced in 1975 by two different research groups: Hänsch and Schawlow, and Wineland and Dehmelt. They both outlined a process of slowing heat-based velocity in atoms by “radiative forces.”[6] In the paper by Hänsch and Schawlow, the effect of radiative pressure on any object that reflects light is described. That concept was then connected to the cooling of atoms in a gas.[7] These early proposals for laser cooling only relied on “scattering force,” the name for the radiative force. In later proposals, laser trapping, a variant of cooling which requires both scattering and a dipole force, would be introduced.[6]

In the late 70s, Ashkin described how radiative forces can be used to both optically trap atoms and simultaneously cool them.[5] He emphasized how this process could allow for long spectroscopic measurements without the atoms escaping the trap and proposed the overlapping of optical traps in order to study interactions between different atoms.[8] Closely following Ashkin’s letter in 1978, two research groups: Wineland, Drullinger and Walls, and Neuhauser, Hohenstatt, Toscheck and Dehmelt furthered refined that work.[6] In specific, Wineland, Drullinger, and Walls were concerned with the improvement of spectroscopy. The group wrote about experimentally demonstrating the cooling of atoms through a process using radiation pressure. They cite a precedence for using radiation pressure in optical traps, yet criticize the ineffectiveness of previous models due to the presence of the Doppler effect. In an effort to lessen the effect, they applied an alternative take on cooling Magnesium ions below the room temperature precedent.[9] Using the electromagnetic trap to contain the Magnesium ions, they bombarded them with a laser barely out of phase from the resonant frequency of the atoms.[10] The research from both groups served to illustrate the mechanical properties of light.[6] Around this time, laser cooling techniques had allowed for temperatures lowered to around 40 Kelvin.

Modern advancements[edit]

William Phillips was influenced by the Wineland paper and attempted to mimic it, using neutral atoms instead of ions. In 1982, he published the first paper outlining the cooling of neutral atoms. The process he used is now known as the Zeeman slower and became one of the standard techniques for slowing an atomic beam. Now, temperatures around 240 microKelvin were reached. That threshold was the lowest researchers thought was possible. When temperatures then reached 43 microKelvin in an experiment by Steven Chu,[11] the new low was explained by the addition of more atomic states in combination to laser polarization. Previous conceptions of laser cooling were decided to have been too simplistic.[10] The major breakthroughs in the 70s and 80s in the use of laser light for cooling led to several improvements to preexisting technology and new discoveries with temperatures just above absolute zero. The cooling processes were utilized to make atomic clocks more accurate, improve spectroscopic measurements, and led to the observation of a new state of matter at ultracold temperatures.[5][10] The new state of matter, the Bose-Einstein Condensate, was observed in 1995 by Eric Cornell, Carl Wieman, and Wolfgang Ketterle.[12]

Doppler cooling[edit]

The lasers needed for the magneto-optical trapping of rubidium 85: (a) & (b) show the absorption (red detuned to the dotted line) and spontaneous emission cycle, (c) & (d) are forbidden transitions, (e) shows that if a cooling laser excites an atom to the F=3 state, it is allowed to decay to the "dark" lower hyperfine, F=2 state, which would stop the cooling process, if it were not for the repumper laser (f).

Doppler cooling, which is usually accompanied by a magnetic trapping force to give a magneto-optical trap, is by far the most common method of laser cooling. It is used to cool low density gases down to the Doppler cooling limit, which for Rubidium 85 is around 150 microkelvin.

In Doppler cooling, the frequency of light is tuned slightly below an electronic transition in the atom. Because the light is detuned to the "red" (i.e., at lower frequency) of the transition, the atoms will absorb more photons if they move towards the light source, due to the Doppler effect. Thus if one applies light from two opposite directions, the atoms will always scatter more photons from the laser beam pointing opposite to their direction of motion. In each scattering event the atom loses a momentum equal to the momentum of the photon. If the atom, which is now in the excited state, then emits a photon spontaneously, it will be kicked by the same amount of momentum, but in a random direction. Since the initial momentum change was a pure loss (opposing the direction of motion), while the subsequent change was random (i.e., not pure gain), the overall result of the absorption and emission process is to reduce the momentum of the atom, therefore its speed — provided its initial speed was larger than the recoil speed from scattering a single photon. If the absorption and emission are repeated many times, the average speed, and therefore the kinetic energy of the atom will be reduced. Since the temperature of a group of atoms is a measure of the average random internal kinetic energy, this is equivalent to cooling the atoms.

Uses[edit]

Laser cooling is primarily used to create ultracold atoms for experiments in quantum physics. These experiments are performed near absolute zero where unique quantum effects such as Bose-Einstein condensation can be observed. Laser cooling has primarily been used on atoms, but recent progress has been made toward laser cooling more complex systems. In 2010, a team at Yale successfully laser-cooled a diatomic molecule.[13] In 2007, an MIT team successfully laser-cooled a macro-scale (1 gram) object to 0.8 K.[14] In 2011, a team from the California Institute of Technology and the University of Vienna became the first to laser-cool a (10 μm x 1 μm) mechanical object to its quantum ground state.[15]

See also[edit]

References[edit]

  1. ^ Laser cooling and trapping of neutral atoms Nobel Lecture by William D. Phillips, Dec 8, 1997. doi:10.1103/RevModPhys.70.721
  2. ^ A. Aspect; E. Arimondo; R. Kaiser; N. Vansteenkiste; C. Cohen-Tannoudji (1988). "Laser Cooling below the One-Photon Recoil Energy by Velocity-Selective Coherent Population Trapping". Phys. Rev. Lett. 61: 826–829. Bibcode:1988PhRvL..61..826A. doi:10.1103/PhysRevLett.61.826. 
  3. ^ Peter Horak; Gerald Hechenblaikner; Klaus M. Gheri; Herwig Stecher; Helmut Ritsch (1988). "Cavity-Induced Atom Cooling in the Strong Coupling Regime". Phys. Rev. Lett. 79: 4974–4977. Bibcode:1997PhRvL..79.4974H. doi:10.1103/PhysRevLett.79.4974. 
  4. ^ Haller, Elmar; Hudson, James; Kelly, Andrew; Cotta, Dylan A.; Peaudecerf, Bruno; Bruce, Graham D.; Kuhr, Stefan. "Single-atom imaging of fermions in a quantum-gas microscope". Nature Physics. 11 (9): 738–742. Bibcode:2015NatPh..11..738H. arXiv:1503.02005Freely accessible. doi:10.1038/nphys3403. 
  5. ^ a b c Adams and Riis, Charles S. and Erling. "Laser Cooling and Manipulation of Neutral Particles" (PDF). New Optics. 
  6. ^ a b c d Phillips, William D. "Nobel Lecture: Laser cooling and trapping of neutral atoms". Reviews of Modern Physics. 70 (3): 721–741. doi:10.1103/revmodphys.70.721. 
  7. ^ "Cooling of gases by laser radiation - ScienceDirect" (PDF). ac.els-cdn.com. Retrieved 2017-05-05. 
  8. ^ Ashkin, A. "Trapping of Atoms by Resonance Radiation Pressure". Physical Review Letters. 40 (12): 729–732. doi:10.1103/physrevlett.40.729. 
  9. ^ Wineland, D. J.; Drullinger, R. E.; Walls, F. L. "Radiation-Pressure Cooling of Bound Resonant Absorbers". Physical Review Letters. 40 (25): 1639–1642. doi:10.1103/physrevlett.40.1639. 
  10. ^ a b c Bardi, Jason Socrates (2008-04-02). "Focus: Landmarks: Laser Cooling of Atoms". Physics. 21. 
  11. ^ "Laser Cooling". hyperphysics.phy-astr.gsu.edu. Retrieved 2017-05-06. 
  12. ^ Chin, Cheng (2016). "Ultracold atomic gases going strong" (PDF). National Science Review. 3: 168–173. 
  13. ^ E. S. Shuman; J. F. Barry; D. DeMille (2010). "Laser cooling of a diatomic molecule". Nature. 467: 820–823. Bibcode:2010Natur.467..820S. PMID 20852614. arXiv:1103.6004Freely accessible. doi:10.1038/nature09443. 
  14. ^ Massachusetts Institute of Technology (2007, April 8). Laser-cooling Brings Large Object Near Absolute Zero. ScienceDaily. Retrieved January 14, 2011.
  15. ^ Caltech Team Uses Laser Light to Cool Object to Quantum Ground State. Caltech.edu. Retrieved June 27, 2013. Updated 10/05/2011

Additional sources[edit]

Disclaimer

None of the audio/visual content is hosted on this site. All media is embedded from other sites such as GoogleVideo, Wikipedia, YouTube etc. Therefore, this site has no control over the copyright issues of the streaming media.

All issues concerning copyright violations should be aimed at the sites hosting the material. This site does not host any of the streaming media and the owner has not uploaded any of the material to the video hosting servers. Anyone can find the same content on Google Video or YouTube by themselves.

The owner of this site cannot know which documentaries are in public domain, which has been uploaded to e.g. YouTube by the owner and which has been uploaded without permission. The copyright owner must contact the source if he wants his material off the Internet completely.

Powered by YouTube
Wikipedia content is licensed under the GFDL and (CC) license