Share
VIDEOS 1 TO 50
Magnetized Target Fusion | Peter O
Magnetized Target Fusion | Peter O'Shea | TEDxBrentwoodCollegeSchool
Published: 2016/11/18
Channel: TEDx Talks
Lockheed Martin Compact Magnetic Fusion Project
Lockheed Martin Compact Magnetic Fusion Project
Published: 2014/11/20
Channel: TopGunMilitary
Plasma Monitoring With General Fusion
Plasma Monitoring With General Fusion
Published: 2014/03/17
Channel: Photon Control Inc
Michel Laberge: How synchronized hammer strikes could generate nuclear fusion
Michel Laberge: How synchronized hammer strikes could generate nuclear fusion
Published: 2014/04/22
Channel: TED
magnetised targeted fusion
magnetised targeted fusion
Published: 2014/07/30
Channel: Roxana Merry
Magnetised Target Fusion Funding Proposal - Group 4
Magnetised Target Fusion Funding Proposal - Group 4
Published: 2017/01/22
Channel: Ryan Blake
DOE NNSA SSGF 2014: Experimental Verification of the Magnetized Liner Inertial Fusion (MagLIF) Co...
DOE NNSA SSGF 2014: Experimental Verification of the Magnetized Liner Inertial Fusion (MagLIF) Co...
Published: 2014/08/05
Channel: Krell Institute
One step closer to fusion power
One step closer to fusion power
Published: 2016/01/21
Channel: Massachusetts Institute of Technology (MIT)
Science Action: How does a magnetic field confine a plasma?
Science Action: How does a magnetic field confine a plasma?
Published: 2014/06/10
Channel: Science Action
Radiation shields for nuclear fusion, why they are needed may Surprise You!
Radiation shields for nuclear fusion, why they are needed may Surprise You!
Published: 2017/03/09
Channel: ASU Student Shop
Incredible response to published evidence for smaller tokamaks
Incredible response to published evidence for smaller tokamaks
Published: 2016/11/25
Channel: Tokamak Energy - A Faster Way to Fusion
FROM NUCLEAR FUSION TO ENERGY SOURCE - STORY BEHIND FUSION POWER - DOCUMENTARY
FROM NUCLEAR FUSION TO ENERGY SOURCE - STORY BEHIND FUSION POWER - DOCUMENTARY
Published: 2017/07/24
Channel: DOCUMENTARY
General Fusion - Technical Update
General Fusion - Technical Update
Published: 2016/11/30
Channel: General Fusion Inc.
DOE NNSA SSGF 2017: Magnetic Direct Drive Magneto-Inertial Fusion Efforts on the Z...
DOE NNSA SSGF 2017: Magnetic Direct Drive Magneto-Inertial Fusion Efforts on the Z...
Published: 2017/07/31
Channel: Krell Institute
Wesley Donesky Energy Conversion Final Presentation
Wesley Donesky Energy Conversion Final Presentation
Published: 2016/04/22
Channel: Wesley Donesky
Kerbal Space Program - Pulsed Fusion Propulsion
Kerbal Space Program - Pulsed Fusion Propulsion
Published: 2015/03/02
Channel: Chris Adderley
How it works: the Revolutionary nuclear fusion machine
How it works: the Revolutionary nuclear fusion machine
Published: 2016/12/06
Channel: Aerospace Engineering
Rethink Fusion:  An introduction to General Fusion
Rethink Fusion: An introduction to General Fusion
Published: 2014/07/29
Channel: General Fusion Inc.
Fusion Power, How it Works   Documentary
Fusion Power, How it Works Documentary
Published: 2017/04/30
Channel: GonzoKlutz Documentaries
Magnetic Fusion Experiments
Magnetic Fusion Experiments
Published: 2014/04/30
Channel: Anna Malcom
Justin Trudeau at General Fusion
Justin Trudeau at General Fusion
Published: 2015/07/02
Channel: whatsinmag
The Fusion Driven Rocket: Animation
The Fusion Driven Rocket: Animation
Published: 2013/03/28
Channel: FusionDrivenRocket
6d Simple design of a magnetic fusion reactor
6d Simple design of a magnetic fusion reactor
Published: 2015/09/15
Channel: Plasma Physics and Applications
KSP Interstellar: Reactors Tutorial
KSP Interstellar: Reactors Tutorial
Published: 2014/06/14
Channel: AddMeGamers
Nuclear fusion within reach | Michel Laberge | TEDxKC
Nuclear fusion within reach | Michel Laberge | TEDxKC
Published: 2014/08/28
Channel: TEDx Talks
UK
UK's latest nuclear fusion reactor could supply the grid with clean power by 2030
Published: 2017/04/29
Channel: TECH-TUBE
Fusion Energy - Sorlox Nautilus Compressor
Fusion Energy - Sorlox Nautilus Compressor
Published: 2013/08/20
Channel: Sorlox
New Machines for Fusion Research | Thomas KLINGER | TEDxBrussels
New Machines for Fusion Research | Thomas KLINGER | TEDxBrussels
Published: 2017/05/09
Channel: TEDx Talks
Exceeding Fusion Fuel Breakeven with Lasers at The National Ignition Facility
Exceeding Fusion Fuel Breakeven with Lasers at The National Ignition Facility
Published: 2016/05/14
Channel: Gabriele Mogni
Nuclear Fusion 500 Terawatt Laser at the National Ignition Facility
Nuclear Fusion 500 Terawatt Laser at the National Ignition Facility
Published: 2012/07/16
Channel: Muon Ray
Kerbal Interstellar Updated (2016)#1 Reactors Tutorial
Kerbal Interstellar Updated (2016)#1 Reactors Tutorial
Published: 2016/07/25
Channel: Steve Drevik
Laser Inertial Fusion Energy - Video Learning - WizScience.com
Laser Inertial Fusion Energy - Video Learning - WizScience.com
Published: 2015/09/10
Channel: Wiz Science™
FUSION FOR ENERGY and AIR LIQUIDE - Working together for ITER
FUSION FOR ENERGY and AIR LIQUIDE - Working together for ITER
Published: 2014/05/21
Channel: Fusion for Energy
Nuclear fusion breakthrough promises unlimited energy
Nuclear fusion breakthrough promises unlimited energy
Published: 2014/03/14
Channel: News Direct
Fusion energy: Powerplant of the future
Fusion energy: Powerplant of the future
Published: 2017/01/26
Channel: CulhamFusionEnergy
Target Enrichment for Next-Generation Sequencing Analyses of SNPs, CNVs, Gene Fusions, and More
Target Enrichment for Next-Generation Sequencing Analyses of SNPs, CNVs, Gene Fusions, and More
Published: 2015/04/01
Channel: GENNews
MW3 - QS [ TargeT_FusiOn ]
MW3 - QS [ TargeT_FusiOn ]
Published: 2012/10/23
Channel: jason p
Fusion Energy: Utopian or Practical?: Andrew Zwicker at TEDxSaintPetersUniversity
Fusion Energy: Utopian or Practical?: Andrew Zwicker at TEDxSaintPetersUniversity
Published: 2013/06/26
Channel: TEDx Talks
New world record set by the team at Alcator C-Mod
New world record set by the team at Alcator C-Mod
Published: 2016/10/14
Channel: MIT Plasma Science and Fusion Center
America and The Nuclear Fusion Full Documentary 2016 Movies
America and The Nuclear Fusion Full Documentary 2016 Movies
Published: 2016/09/20
Channel: Space World
Yugioh Target Repackaged Products Opening! Packs/Box/Sealed Deck Box Opening #1
Yugioh Target Repackaged Products Opening! Packs/Box/Sealed Deck Box Opening #1
Published: 2017/01/18
Channel: Aerodragon
Ultimate Energy    Nuclear Fusion Reactor Research Documentary
Ultimate Energy Nuclear Fusion Reactor Research Documentary
Published: 2016/11/06
Channel: Etiuda97
Freehand 3D Targeted Prostate Biopsy using MR-Ultrasound Fusion - Trinity®
Freehand 3D Targeted Prostate Biopsy using MR-Ultrasound Fusion - Trinity®
Published: 2016/05/13
Channel: KOELIS
MRI controled target fusion biopsy with koelis
MRI controled target fusion biopsy with koelis
Published: 2015/01/25
Channel: cliniqueurologique
The New Fusion Race - Part 3 - Focus Fusion: How Does It Work?
The New Fusion Race - Part 3 - Focus Fusion: How Does It Work?
Published: 2017/04/08
Channel: LPPFusion
The 20th Ockham Lecture
The 20th Ockham Lecture 'Fusion Energy with a Twist'
Published: 2016/11/09
Channel: Merton College, Oxford
Magnetic Field
Magnetic Field
Published: 2012/11/05
Channel: TechXCorp
Fusion: Alex Nutkiewicz at TEDxConejo
Fusion: Alex Nutkiewicz at TEDxConejo
Published: 2012/06/29
Channel: TEDx Talks
Bring the power of the sun to Earth with AVEVA by Fabien Berruyer and Guillaume Lentini, ITER
Bring the power of the sun to Earth with AVEVA by Fabien Berruyer and Guillaume Lentini, ITER
Published: 2016/11/18
Channel: AVEVA Group
Liberal leader Christy Clark tours a plasma injector at General Fusion in Burnaby.
Liberal leader Christy Clark tours a plasma injector at General Fusion in Burnaby.
Published: 2017/04/12
Channel: Rob Shaw
NEXT
GO TO RESULTS [51 .. 100]

WIKIPEDIA ARTICLE

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Magnetized target fusion (MTF) is a fusion power concept that combines features of magnetic confinement fusion (MCF) and inertial confinement fusion (ICF). Like the magnetic approach, the fusion fuel is confined at lower density by magnetic fields while it is heated into a plasma. As with the inertial approach, fusion is initiated by rapidly squeezing the target to greatly increase fuel density and temperature. Although the resulting density is far lower than in ICF, it is thought that the combination of longer confinement times and better heat retention will let MTF operate, yet be easier to build. The term magneto-inertial fusion (MIF) is similar, but encompasses a wider variety of arrangements. The two terms are often applied interchangeably to experiments.

Fusion concepts[edit]

In fusion, lighter atoms are fused to make heavier atoms. The easiest fuels to do this with are isotopes of hydrogen.[1] Generally these reactions take place inside a plasma. A plasma is a heated gas, where all the electrons have been stripped away; the gas has been fully ionized. The ions are positively charged, so they repel each other due to the electrostatic force. Fusion occurs when two ions collide at high energy, allowing the strong force to overcome the electrostatic force at a short distance. The amount of energy that needs to be applied to force the nuclei together is termed the Coulomb barrier or fusion barrier energy. For fusion to occur in bulk plasma, it must be heated to tens of millions of degrees and compressed at high pressures, for a sufficient amount of time. Together, this is known as the "Triple Product".[2] Fusion research focuses on reaching the highest triple product possible.

Magnetic fusion works to heat a dilute plasma (1014 ions per cm3) to high temperatures, around 20 keV (~200 million C). Ambient air is about 100,000 times denser. To make a practical reactor at these temperatures, the fuel must be confined for long periods of time, on the order of 1 second. The ITER tokamak design is currently being built to test the magnetic approach with pulse lengths up to 20 minutes. Inertial fusion attempts to produce much higher densities, 1025 ions per cubic cm, about 100 times the density of lead. This causes reactions to occur extremely quickly (~1 nanosecond), which allows confinement time to be extremely short, as the heat of reactions drives the plasma outward. The $3–4 billion National Ignition Facility (NIF) machine at Lawrence Livermore National Laboratory (LLNL) will be a definitive test of ICF at megajoule energy levels. As of 2015 both conventional methods of nuclear fusion are nearing net energy (Q>1) levels after many decades of research, but remain far from a practical energy-producing device.

Approach[edit]

While MCF and ICF attack the Lawson criterion problem from different directions, MTF attempts to work between the two. MTF aims for a plasma density of 1019 cm−3., intermediate between MCF (1014 cm−3) and ICF (1025 cm−3)[3] At this density, confinement times must be on the order of 1 µs, again intermediate between the other two. MTF uses magnetic fields to slow down plasma losses, and inertial compression is used to heat the plasma.[3]

In general terms, MTF is an inertial method. Density is increased through a pulsed operation that compresses the fuel, heating the plasma, just as compression heats an ordinary gas. In traditional ICF, more energy is added through the lasers that compress the target, but that energy leaks away through multiple channels. MTF employs a magnetic field that is created before compression that confines and insulates fuel so less energy is lost. The result, compared to ICF, is a somewhat-dense, somewhat-hot fuel mass that undergoes fusion at a medium reaction rate, so it only must be confined for a medium length of time.

As the fuel pellet is compressed, the heat and pressure in the plasma grow. The rate of collapse is generally linear, but the pressure is based on the volume, which increases with the cube of the compression. As some point the pressure is enough to stop and then reverse the collapse. The mass of the metal liner around the fuel means this process takes some time to occur. The MTF concept is based on having this dwell time be long enough for the fusion processes to take place.[4]

MTF has advantages over both ICF and low-density plasma fusion. Its energy inputs are relatively efficient and inexpensive, whereas ICF demands specialized high-performance lasers that currently offer low efficiency. The cost and complexity of these lasers, termed "drivers", is so great that traditional ICF methods remain impractical for commercial energy production. Likewise, although MTF needs magnetic confinement to stabilize and insulate the fuel while it is being compressed, the needed confinement time is thousands of times less than for MCF. Confinement times of the order needed for MTF were demonstrated in MCF experiments years ago.

The densities, temperatures and confinement times needed by MTF are well within the current state of the art and have been repeatedly demonstrated.[5] Los Alamos National Laboratory has referred to the concept as a "low cost path to fusion".

Devices[edit]

FRX-L[edit]

In the pioneering experiment, Los Alamos National Laboratory's FRX-L,[6] a plasma is first created at low density by transformer-coupling an electric current through a gas inside a quartz tube (generally a non-fuel gas for testing purposes). This heats the plasma to about 200 eV (~2.3 million degrees). External magnets confine fuel within the tube. Plasmas are electrically conducting, allowing a current to pass through them. This current, generates a magnetic field that interacts with the current. The plasma is arranged so that the fields and current stabilize within the plasma once it is set up, self-confining the plasma. FRX-L uses the field-reversed configuration for this purpose. Since the temperature and confinement time is 100x lower than in MCF, the confinement is relatively easy to arrange and does not need the complex and expensive superconducting magnets used in most modern MCF experiments.

FRX-L is used solely for plasma creation, testing and diagnostics.[3] It uses four high-voltage (up to 100 kV) capacitor banks storing up to 1 MJ of energy to drive a 1.5 MA current in one-turn magnetic-field coils that surround a 10 cm diameter quartz tube.[6] In its current form as a plasma generator, FRX-L has demonstrated densities between 2 and 4 × 1016 cm−3, temperatures of 100 to 250 eV, magnetic fields of 2.5 T and lifetimes of 10 to 15 µs.[7] All of these are within an order of magnitude of what would be needed for an energy-positive machine.

FRX-L was later upgraded to add an "injector" system.[8] This is situated around the quartz tube and consists of a conical arrangement of magnetic coils. When powered, the coils generate a field that is strong at one end of the tube and weaker at the other, pushing the plasma out the larger end. To complete the system, the injector was planned to be placed above the focus of the existing Shiva Star "can crusher" at the Air Force Research Laboratory's Directed Energy Lab at the Kirtland Air Force Base in Albuquerque, NM.[6]

FRCHX[edit]

Instead, a new experiment, FRCHX,[9] was placed on Shiva Star. Similar to FRX-L, it uses a generation area and injects the plasma bundle into the Shiva Star liner compression area. Shiva Star delivers about 1.5 MJ into the kinetic energy of the 1 mm thick aluminum liner, which collapses cylindrically at about 5 km/s. This collapses the plasma bundle to a density around 5x1018 cm−3 and raises the temperature to about 5 keV, producing neutron yields on the order of 1012 neutrons "per shot" using a D-D fuel.[9] The power released in the larger shots, in the range of MJ, needs a period of resetting the equipment on the order of a week. The huge electromagnetic pulse (EMP) caused by the equipment forms a challenging environment for diagnostics.

Challenges[edit]

MTF is not the first "new approach" to fusion power. When ICF was introduced in the 1960s, it was a radical new approach that was expected[by whom?] to produce practical fusion devices by the 1980s. Other approaches have encountered unexpected problems that greatly increased the difficulty of producing output power. With MCF, it was unexpected instabilities in plasmas as density or temperature was increased. With ICF, it was unexpected losses of energy and difficulties "smoothing" the beams. These have been partially addressed in large modern machines, but only at great expense.

In a general sense, MTF's challenges appear to be similar to those of ICF. To produce power effectively, the density must be increased to a working level and then held there long enough for most of the fuel mass to undergo fusion. This is occurring while the foil liner is being driven inwards. Mixing of the metal with the fusion fuel would "quench" the reaction (a problem that occurs in MCF systems when plasma touches the vessel wall). Similarly, the collapse must be fairly symmetrical to avoid "hot spots" that could destabilize the plasma while it burns.

Problems in commercial development are similar to those for any of the existing fusion reactor designs. The need to form high-strength magnetic fields at the focus of the machine is at odds with the need to extract the heat from the interior, making the physical arrangement of the reactor a challenge. Further, the fusion process emits large numbers of neutrons (in common reactions at least) that lead to neutron embrittlement that degrades the strength of the support structures and conductivity of metal wiring. In typical MCF schemes, neutrons are intended to be captured in a lithium shell to generate more tritium to feed in as fuel, further complicating the overall arrangement. Deuterium-deuterium fusion would of course avoid this requirement.

See also[edit]

References[edit]

  1. ^ Azenti book on ICF, 2004, chapter 1
  2. ^ "Triple product". EFDA. 2014-06-20. Retrieved 2014-08-24. 
  3. ^ a b c Magnetized Target Fusion Experiments at LANL
  4. ^ Template:Cite whitepaper
  5. ^ J. H. Degnan, J.; et al. (1999). "Compression of Plasma to Megabar Range using Imploding Liner". Physical Review Letters. 82 (13): 2681. Bibcode:1999PhRvL..82.2681D. doi:10.1103/PhysRevLett.82.2681. 
  6. ^ a b c FRX-L: A Plasma Injector for Magnetized Target Fusion
  7. ^ (PDF) https://web.archive.org/web/20090116021019/http://wsx.lanl.gov/Publications/Intrator_Physics-of-Plasmas-APS2003-invited.pdf. Archived from the original (PDF) on January 16, 2009. Retrieved August 25, 2009.  Missing or empty |title= (help)
  8. ^ Applications of predictions for FRC translation
  9. ^ a b FRCHX Magnetized Target Fusion HEDLP Experiments (IAEA 2008 Fusion Energy Conference)

Further reading[edit]

  • R.E. Siemon, I.R. Lindemuth, and K.F. Schoenberg, Why MTF is a low cost path to fusion, Comments Plasma Physics Controlled Fusion vol 18 issue 6, pp. 363–386 (1999).
  • P.V. Subhash et al. 2008 Phys. Scr. 77 035501 (12pp) doi:10.1088/0031-8949/77/03/035501 Effect of liner non-uniformity on plasma instabilities in an inverseZ-pinch magnetized target fusion system: liner-on-plasma simulations and comparison with linear stability analysis

Disclaimer

None of the audio/visual content is hosted on this site. All media is embedded from other sites such as GoogleVideo, Wikipedia, YouTube etc. Therefore, this site has no control over the copyright issues of the streaming media.

All issues concerning copyright violations should be aimed at the sites hosting the material. This site does not host any of the streaming media and the owner has not uploaded any of the material to the video hosting servers. Anyone can find the same content on Google Video or YouTube by themselves.

The owner of this site cannot know which documentaries are in public domain, which has been uploaded to e.g. YouTube by the owner and which has been uploaded without permission. The copyright owner must contact the source if he wants his material off the Internet completely.

Powered by YouTube
Wikipedia content is licensed under the GFDL and (CC) license