Play Video
1
Mechanical Equilibrium
Mechanical Equilibrium
::2012/08/28::
Play Video
2
Example of Mechanical equilibrium with torque
Example of Mechanical equilibrium with torque
::2010/10/29::
Play Video
3
Lecture 01 Mechanical Equilibrium: Dynamic and Static  Equilibrium
Lecture 01 Mechanical Equilibrium: Dynamic and Static Equilibrium
::2013/10/05::
Play Video
4
Mechanical Equilibrium
Mechanical Equilibrium
::2013/11/11::
Play Video
5
Forces Lesson
Forces Lesson
::2009/10/24::
Play Video
6
Lecture 01 Mechanical Equilibrium Problem Solving
Lecture 01 Mechanical Equilibrium Problem Solving
::2013/10/05::
Play Video
7
[clipvidva]  สมดุลกล Mechanical Equilibrium Part1/5
[clipvidva] สมดุลกล Mechanical Equilibrium Part1/5
::2013/12/22::
Play Video
8
Mechanical Equilibrium
Mechanical Equilibrium
::2014/02/21::
Play Video
9
[clipvidva]  สมดุลกล Mechanical Equilibrium Part2/5
[clipvidva] สมดุลกล Mechanical Equilibrium Part2/5
::2014/01/05::
Play Video
10
[clipvidva]  สมดุลกล Mechanical Equilibrium Part3/5
[clipvidva] สมดุลกล Mechanical Equilibrium Part3/5
::2014/01/12::
Play Video
11
Thermodynamics 34 : Mechanical Equilibrium and Ideal Gas Law
Thermodynamics 34 : Mechanical Equilibrium and Ideal Gas Law
::2013/09/01::
Play Video
12
[clipvidva]  สมดุลกล Mechanical Equilibrium Part4/5
[clipvidva] สมดุลกล Mechanical Equilibrium Part4/5
::2014/01/25::
Play Video
13
[clipvidva]  สมดุลกล Mechanical Equilibrium Part5/5
[clipvidva] สมดุลกล Mechanical Equilibrium Part5/5
::2014/02/02::
Play Video
14
Mechanical Equilibrium
Mechanical Equilibrium
::2014/02/18::
Play Video
15
Example of Mechanical equilibrium with torque #2
Example of Mechanical equilibrium with torque #2
::2010/10/29::
Play Video
16
力學平衡mechanical equilibrium
力學平衡mechanical equilibrium
::2013/12/15::
Play Video
17
Lecture 01 Mechanical Equilibrium Part III
Lecture 01 Mechanical Equilibrium Part III
::2013/10/08::
Play Video
18
Balancing Torques (mechanical equilibrium)
Balancing Torques (mechanical equilibrium)
::2011/11/03::
Play Video
19
Hewitt-Drew-it! PHYSICS 1. Equilibrium Rule  Hewitt-Drew-it!
Hewitt-Drew-it! PHYSICS 1. Equilibrium Rule Hewitt-Drew-it!
::2012/07/11::
Play Video
20
3 26 12 Lous physics Mechanical Equilibrium
3 26 12 Lous physics Mechanical Equilibrium
::2012/04/02::
Play Video
21
Mechanical Engineering Thermodynamics - Lec 2, pt 5 of 5:  Quasi-Equilibrium Processes
Mechanical Engineering Thermodynamics - Lec 2, pt 5 of 5: Quasi-Equilibrium Processes
::2013/08/26::
Play Video
22
Thermodynamic Equilibrium
Thermodynamic Equilibrium
::2013/02/17::
Play Video
23
3.1 Equilibrium | Physics
3.1 Equilibrium | Physics
::2014/07/06::
Play Video
24
Sample Equilibrium Problem
Sample Equilibrium Problem
::2014/02/18::
Play Video
25
Thermal Equilibrium
Thermal Equilibrium
::2010/05/06::
Play Video
26
Doc Physics - Static Equilibrium, or What to do when nothing at all is happening
Doc Physics - Static Equilibrium, or What to do when nothing at all is happening
::2012/09/25::
Play Video
27
Cells relaxing to mechnical equilibrium
Cells relaxing to mechnical equilibrium
::2011/08/19::
Play Video
28
Despite Exile - Equilibrium
Despite Exile - Equilibrium
::2013/12/05::
Play Video
29
Equilibrium variant
Equilibrium variant
::2012/06/27::
Play Video
30
iron carbon phase diagram explanation for uptu mechanical engineers by IIT Kanpur
iron carbon phase diagram explanation for uptu mechanical engineers by IIT Kanpur
::2013/06/14::
Play Video
31
Equilibrium of Rigid Body Problem 4.75 (Statics Tutorials)
Equilibrium of Rigid Body Problem 4.75 (Statics Tutorials)
::2011/10/12::
Play Video
32
Kinetics and Equilibrium
Kinetics and Equilibrium
::2014/05/12::
Play Video
33
Equilibrium vs. Steady State
Equilibrium vs. Steady State
::2014/01/21::
Play Video
34
Ladder Example for Static Equilibrium
Ladder Example for Static Equilibrium
::2013/09/30::
Play Video
35
Thermodynamics 40 : Free Energy and Equilibrium
Thermodynamics 40 : Free Energy and Equilibrium
::2013/09/01::
Play Video
36
Static Equilibrium and Triangle of Forces
Static Equilibrium and Triangle of Forces
::2010/03/31::
Play Video
37
Mod- 9 Lec-22 Stability of Equilibrium
Mod- 9 Lec-22 Stability of Equilibrium
::2010/09/14::
Play Video
38
IRON CARBON EQUILIBRIUM DIAGRAM
IRON CARBON EQUILIBRIUM DIAGRAM
::2013/09/29::
Play Video
39
YITC14 - Dynamic Equilibrium
YITC14 - Dynamic Equilibrium
::2014/08/18::
Play Video
40
Gas-Phase Equilibrium
Gas-Phase Equilibrium
::2014/01/29::
Play Video
41
Mod-1 Lec-2 Equations of Equilibrium
Mod-1 Lec-2 Equations of Equilibrium
::2010/04/15::
Play Video
42
Mod-01 Lec-23 Burn Rate of Solid Propellants and Equilibrium pressure in Solid Propellants Rockets
Mod-01 Lec-23 Burn Rate of Solid Propellants and Equilibrium pressure in Solid Propellants Rockets
::2012/06/25::
Play Video
43
equilibrium vs. steady state
equilibrium vs. steady state
::2014/07/29::
Play Video
44
Linearization of a Nonlinear Dynamic System About An Equilibrium Point
Linearization of a Nonlinear Dynamic System About An Equilibrium Point
::2014/09/07::
Play Video
45
Static Equilibrium Sample Problem 3
Static Equilibrium Sample Problem 3
::2012/08/08::
Play Video
46
9.1 | MSE104 Non-equilibrium cooling of steels
9.1 | MSE104 Non-equilibrium cooling of steels
::2012/10/09::
Play Video
47
AP Physics 1: Equilibrium 2: Static Equilibrium Problem 1
AP Physics 1: Equilibrium 2: Static Equilibrium Problem 1
::2012/10/18::
Play Video
48
Equilibrium with beams and masses
Equilibrium with beams and masses
::2013/09/22::
Play Video
49
Enventive Software - Static Equilibrium Demo
Enventive Software - Static Equilibrium Demo
::2013/07/11::
Play Video
50
Physics - Equilibrium of Force xy-component 1
Physics - Equilibrium of Force xy-component 1
::2010/11/13::
NEXT >>
RESULTS [51 .. 101]
From Wikipedia, the free encyclopedia
Jump to: navigation, search
Force diagram showing the forces acting on an object at rest on a surface. The normal force N is equal and opposite to the gravitational force mg so the net force is zero. Consequently the object is in a state of static mechanical equilibrium.

A mechanical equilibrium is a state in which a momentum coordinate of a particle, rigid body, or dynamical system is conserved. Usually this refers to linear momentum. For instance, a linear mechanical equilibrium would be a state in which the linear momentum of the system is conserved as the net force on the object is zero.[1][2] In the specific case that the linear momentum is zero and conserved, the system can be said to be in a static equilibrium[3][4] although for any system in which the linear momentum is conserved, it is possible to shift to a non-inertial reference frame that is stationary with respect to the object.

In a rotational mechanical equilibrium the angular momentum of the object is conserved and the net torque is zero.[2] More generally in conservative systems, equilibrium is established at a point in configuration space where the gradient with respect to the generalized coordinates of the potential energy is zero.

Stability[edit]

An important property of systems at mechanical equilibrium is their stability. In the terminology of elementary calculus, a system at mechanical equilibrium is at a critical point in potential energy where the first derivative is zero. To determine whether or not the system is stable or unstable, we apply the second derivative test:

Unstable equilibria
  • Second derivative < 0: The potential energy is at a local maximum, which means that the system is in an unstable equilibrium state. If the system is displaced an arbitrarily small distance from the equilibrium state, the forces of the system cause it to move even farther away.
Stable equilibria
  • Second derivative > 0: The potential energy is at a local minimum. This is a stable equilibrium. The response to a small perturbation is forces that tend to restore the equilibrium. If more than one stable equilibrium state is possible for a system, any equilibria whose potential energy is higher than the absolute minimum represent metastable states.
Neutral equilibria
  • Second derivative = 0 or does not exist: The state is neutral to the lowest order and nearly remains in equilibrium if displaced a small amount. To investigate the precise stability of the system, higher order derivatives must be examined. The state is unstable if the lowest nonzero derivative is of odd order or has a negative value, stable if the lowest nonzero derivative is both of even order and has a positive value, and neutral if all higher order derivatives are zero. In a truly neutral state the energy does not vary and the state of equilibrium has a finite width. This is sometimes referred to as state that is marginally stable or in a state of indifference.

When considering more than one dimension, it is possible to get different results in different directions, for example stability with respect to displacements in the x-direction but instability in the y-direction, a case known as a saddle point. Generally an equilibrium is only referred to as stable if it is stable in all directions.

Examples[edit]

The special case of mechanical equilibrium of a stationary object is static equilibrium. A paperweight on a desk would be in static equilibrium. The minimal number of static equilibria of homogeneous, convex bodies (when resting under gravity on a horizontal surface) is of special interest. In the planar case, the minimal number is 4, while in three dimensions one can build an object with just one stable and one unstable balance point, this is called gomboc. A child sliding down a slide at constant speed would be in mechanical equilibrium, but not in static equilibrium (in the reference frame of the slide).

An example of mechanical equilibrium is a person trying to press a spring. He or she can push it up to a point after which it reaches a state where the force trying to compress it and the resistive force from the spring are equal, so the person cannot further press it. At this state the system will be in mechanical equilibrium. When the pressing force is removed the spring attains its original state.

See also[edit]

Notes and references[edit]

  1. ^ John L Synge & Byron A Griffith (1949). Principles of Mechanics (2nd ed.). McGraw-Hill. pp. 45–46. 
  2. ^ a b Beer FP, Johnston ER, Mazurek DF, Cornell PJ, and Eisenberg, ER. (2009) Vector Mechanics for Engineers: Statics and Dymanics. 9th ed. McGraw-Hill. p 158.
  3. ^ Herbert Charles Corben & Philip Stehle (1994). Classical Mechanics (Reprint of 1960 second ed.). Courier Dover Publications. p. 113. ISBN 0-486-68063-0. 
  4. ^ Lakshmana C. Rao, J. Lakshminarasimhan, Raju Sethuraman, Srinivasan M. Sivakumar (2004). Engineering Mechanics. PHI Learning Pvt. Ltd. p. 6. ISBN 81-203-2189-8. 

Further reading[edit]

  • Marion JB and Thornton ST. (1995) Classical Dynamics of Particles and Systems. Fourth Edition, Harcourt Brace & Company.
Wikipedia content is licensed under the GFDL License
Powered by YouTube
LEGAL
  • Mashpedia © 2014