Share

WIKIPEDIA ARTICLE

From Wikipedia, the free encyclopedia
Jump to: navigation, search
GK Persei: Nova of 1901 - remnant

A nova remnant is made up of the material either left behind by a sudden explosive fusion eruption by classical novae, or from multiple ejections by recurrent novae. Over their short lifetimes, nova shells show expansion velocities of around 1000 km/s,[1] whose faint nebulosities are usually illuminated by their progenitor stars via light echos as observed with the spherical shell[1] of Nova Persei 1901[2] or the energies remaining in the expanding bubbles like T Pyxidis.[3]

Most novae require a close binary system, with a white dwarf and a main sequence, sub-giant, or red giant star, or the merging of two red dwarfs, so probably all nova remnants must be associated with binaries.[4] This theoretically means these nebula shapes might be affected by their central progenitor stars and the amount of matter ejected by novae.[1] The shapes of these nova nebulae are of much interest to modern astrophysicists.[1][4]

Nova remnants when compared to supernova remnants or planetary nebulae generate much less both in energy and mass. They can be observed for perhaps a few centuries.[1] Examples of novae displaying nebula shells or remnants include: GK Per, RR Pic, DQ Her, FH Ser, V476 Cyg, V1974 Cyg, HR Del and V1500 Cyg.[1][5] Notably, more nova remnants have been found with the new novae, due to improve imaging technology like CCD and at other wavelengths.

See also[edit]

References[edit]

  1. ^ a b c d e f Lloyd, H.M.; O'Brien, T.J.; Bode, M.F. (1997). "Shaping of nova remnants by binary motion". Monthly Notices of the Royal Astronomical Society. 284: 137–147. Bibcode:1997MNRAS.284..137L. doi:10.1093/mnras/284.1.137. 
  2. ^ Liimets, T.; Corradi, R.L.M.; Santander-García, M.; Villaver, E.; Rodríguez-Gil, P.; Verro, K.; Kolka, I. (2014). "A Dynamical Study of the Nova Remnant of GK Persei / Stella Novae: Past and Future Decades". ASP Conference Series, Proceedings of a conference held 4–8 February 2013 at the Pavilion Clock Tower, Cape Town, South Africa. Edited by P.A. Woudt and V.A.R.M. Ribeiro, 2014. 490: 109–115. arXiv:1310.4488Freely accessible. Bibcode:2014ASPC..490..109L. doi:10.1086/109995. 
  3. ^ Ogley, R. N.; Chaty, S.; Crocker, M.; Eyres, S. P. S.; et al. (Apr 2002). "A search for radio emission from Galactic supersoft X-ray sources". Monthly Notices of the Royal Astronomical Society. 330 (4): 772–7. arXiv:astro-ph/0111120Freely accessible. Bibcode:2002MNRAS.330..772O. doi:10.1046/j.1365-8711.2002.05130.x. 
  4. ^ a b Bode, M.F. (2002). "The Evolution of Nova Remnants". AIP Conference Proceedings: Classical Nova Explosions: International Conference on Classical Nova Explosions. 637: 497–508. arXiv:astro-ph/0211437Freely accessible. Bibcode:2002AIPC..637..497B. doi:10.1063/1.1518252. 
  5. ^ Lloyd, H. M.; O'Brien, T. J.; Bode, M. F. (1997). "Shaping of nova remnants by binary motion". Monthly Notices of the Royal Astronomical Society. 284: 137. Bibcode:1997MNRAS.284..137L. doi:10.1093/mnras/284.1.137. 

Gallery[edit]

Nova T Pyxidis remnant 

External links[edit]

Disclaimer

None of the audio/visual content is hosted on this site. All media is embedded from other sites such as GoogleVideo, Wikipedia, YouTube etc. Therefore, this site has no control over the copyright issues of the streaming media.

All issues concerning copyright violations should be aimed at the sites hosting the material. This site does not host any of the streaming media and the owner has not uploaded any of the material to the video hosting servers. Anyone can find the same content on Google Video or YouTube by themselves.

The owner of this site cannot know which documentaries are in public domain, which has been uploaded to e.g. YouTube by the owner and which has been uploaded without permission. The copyright owner must contact the source if he wants his material off the Internet completely.

Powered by YouTube
Wikipedia content is licensed under the GFDL and (CC) license