Play Video
1
Morphology Of Flowering Plants
Morphology Of Flowering Plants
::2010/05/04::
Play Video
2
Biology 1B - Lecture 36: Introduction to plant morphology an
Biology 1B - Lecture 36: Introduction to plant morphology an
::2012/11/19::
Play Video
3
Biology 1B - Lecture 34: Introduction to plant morphology an
Biology 1B - Lecture 34: Introduction to plant morphology an
::2010/11/16::
Play Video
4
Plant Morphology
Plant Morphology
::2012/01/14::
Play Video
5
XI - Biology - Morphology Of Flowering Plants for NEET
XI - Biology - Morphology Of Flowering Plants for NEET
::2012/07/17::
Play Video
6
NEET BIO - morphology in plants, The stem.
NEET BIO - morphology in plants, The stem.
::2013/03/04::
Play Video
7
Biology 1B - Lecture 36: Introduction to plant morphology an
Biology 1B - Lecture 36: Introduction to plant morphology an
::2011/11/21::
Play Video
8
Plant morphology and transport
Plant morphology and transport
::2012/05/01::
Play Video
9
NEET BIO - morphology in plants, Types of leaves.
NEET BIO - morphology in plants, Types of leaves.
::2013/03/05::
Play Video
10
Biology Morphology of Flowering Plants part 1 (Introduction) CBSE class 11 XI
Biology Morphology of Flowering Plants part 1 (Introduction) CBSE class 11 XI
::2014/08/05::
Play Video
11
plant morphology By SimplyLearnt
plant morphology By SimplyLearnt
::2009/03/26::
Play Video
12
Class 11-Botany-Morphology of Flowering Plants-Medical-NEET Videos
Class 11-Botany-Morphology of Flowering Plants-Medical-NEET Videos
::2013/03/19::
Play Video
13
Morphology of plant 001
Morphology of plant 001
::2014/07/15::
Play Video
14
Plant reproductive morphology
Plant reproductive morphology
::2014/07/29::
Play Video
15
NEET BIO - morphology in plants, the root
NEET BIO - morphology in plants, the root
::2013/03/05::
Play Video
16
General Science : Morphology of plant 2
General Science : Morphology of plant 2
::2014/05/20::
Play Video
17
Morphology Of Plant Smart Test 1 , AIPMT  online study material
Morphology Of Plant Smart Test 1 , AIPMT online study material
::2013/06/05::
Play Video
18
Biology Morphology of Flowering Plants part 23 (Carpel: Strucutre) CBSE class 11 XI
Biology Morphology of Flowering Plants part 23 (Carpel: Strucutre) CBSE class 11 XI
::2014/08/18::
Play Video
19
PEECS Plus One Botany Morphology of flowering plants Part 02
PEECS Plus One Botany Morphology of flowering plants Part 02
::2013/10/03::
Play Video
20
11th lecture 1 morphology of flowering plant
11th lecture 1 morphology of flowering plant
::2013/10/02::
Play Video
21
11th lecture 3 on morphology of flowering plant
11th lecture 3 on morphology of flowering plant
::2013/10/02::
Play Video
22
morphology plant tami8
morphology plant tami8
::2014/04/11::
Play Video
23
Biology Morphology of Flowering Plants part 24 (Placentation: types) CBSE class 11 XI
Biology Morphology of Flowering Plants part 24 (Placentation: types) CBSE class 11 XI
::2014/08/18::
Play Video
24
PEECS Plus One Botany Morphology in Flowering Plants Part 01
PEECS Plus One Botany Morphology in Flowering Plants Part 01
::2013/09/26::
Play Video
25
Morphology Of Plant Smart Test 6 , Online test series for AIPMT biology
Morphology Of Plant Smart Test 6 , Online test series for AIPMT biology
::2013/06/05::
Play Video
26
11th Biology lecture 1 on morphology of flowring plant
11th Biology lecture 1 on morphology of flowring plant
::2013/09/29::
Play Video
27
Biology Morphology of Flowering Plants part 19 (Flower: inflorescense) CBSE class 11
Biology Morphology of Flowering Plants part 19 (Flower: inflorescense) CBSE class 11
::2014/08/14::
Play Video
28
11th Biology lecture 4 on morphology of flowring plant
11th Biology lecture 4 on morphology of flowring plant
::2013/09/30::
Play Video
29
Morphology Of Plant Smart Test 4 , AIPMT  test material
Morphology Of Plant Smart Test 4 , AIPMT test material
::2013/06/05::
Play Video
30
11th lecture 5 on morphology of flowering plant
11th lecture 5 on morphology of flowering plant
::2013/10/02::
Play Video
31
NEET BIO - morphology in plants, Modifications of stem
NEET BIO - morphology in plants, Modifications of stem
::2013/03/05::
Play Video
32
Ornamental Banana Morphology  - Plant Habit of Musa, Musella and Ensete
Ornamental Banana Morphology - Plant Habit of Musa, Musella and Ensete
::2010/11/28::
Play Video
33
11th lecture 2 on morphology of flowering plant
11th lecture 2 on morphology of flowering plant
::2013/10/02::
Play Video
34
11th lecture 4 on morphology of flowering plant
11th lecture 4 on morphology of flowering plant
::2013/10/02::
Play Video
35
Morphology Of Plant Smart Test 3 , best coaching for AIPMT  biology
Morphology Of Plant Smart Test 3 , best coaching for AIPMT biology
::2013/06/05::
Play Video
36
Biology Morphology of Flowering Plants part 4 (Root parts) CBSE class 11  XI
Biology Morphology of Flowering Plants part 4 (Root parts) CBSE class 11 XI
::2014/08/06::
Play Video
37
General Science : Morphology of plant 1
General Science : Morphology of plant 1
::2014/05/19::
Play Video
38
Biology Morphology of Flowering Plants part 9 (Aerial Stem: Strong, Weak stem) CBSE Class 11
Biology Morphology of Flowering Plants part 9 (Aerial Stem: Strong, Weak stem) CBSE Class 11
::2014/08/09::
Play Video
39
Biology Morphology of Flowering Plants part 8 (Stem parts unctions, Modifications) CBSE class 11 XI
Biology Morphology of Flowering Plants part 8 (Stem parts unctions, Modifications) CBSE class 11 XI
::2014/08/08::
Play Video
40
PLANT NEMATODES Methodology Morphology Systematics Biology and Ecology скач�
PLANT NEMATODES Methodology Morphology Systematics Biology and Ecology скач�
::2014/02/17::
Play Video
41
11th Biology lecture 2 on morphology of flowring plant
11th Biology lecture 2 on morphology of flowring plant
::2013/09/30::
Play Video
42
Biology Morphology of Flowering Plants part 31 (Seed : Structure & types ) CBSE class 11 XI
Biology Morphology of Flowering Plants part 31 (Seed : Structure & types ) CBSE class 11 XI
::2014/08/22::
Play Video
43
Biology Morphology of Flowering Plants part 3 (Root types: Primary, Fibrous ) CBSE class 11
Biology Morphology of Flowering Plants part 3 (Root types: Primary, Fibrous ) CBSE class 11
::2014/08/06::
Play Video
44
11th Bio morphology of flowering plants lecture 323 Oct  2012
11th Bio morphology of flowering plants lecture 323 Oct 2012
::2012/12/27::
Play Video
45
Biology Morphology of Flowering Plants part 13 (Leaf: parts-lamina, Petiole, Stipule) CBSE class 11
Biology Morphology of Flowering Plants part 13 (Leaf: parts-lamina, Petiole, Stipule) CBSE class 11
::2014/08/11::
Play Video
46
Biology Morphology of Flowering Plants part 22 (Stamen: Structure & Arrangement) CBSE class 11 XI
Biology Morphology of Flowering Plants part 22 (Stamen: Structure & Arrangement) CBSE class 11 XI
::2014/08/15::
Play Video
47
Biology Morphology of Flowering Plants part 25 (Aestivation: types) CBSE class 11 XI
Biology Morphology of Flowering Plants part 25 (Aestivation: types) CBSE class 11 XI
::2014/08/19::
Play Video
48
Pigeon pea morphology
Pigeon pea morphology
::2013/09/17::
Play Video
49
Biology Morphology of Flowering Plants part 26 (Flowetr type) CBSE class 11 XI
Biology Morphology of Flowering Plants part 26 (Flowetr type) CBSE class 11 XI
::2014/08/19::
Play Video
50
11th Biology lecture 3 on morphology of flowring plant
11th Biology lecture 3 on morphology of flowring plant
::2013/09/30::
NEXT >>
RESULTS [51 .. 101]
From Wikipedia, the free encyclopedia
Jump to: navigation, search

Plant morphology or phytomorphology is the study of the physical form and external structure of plants.[1] This is usually considered distinct from plant anatomy,[1] which is the study of the internal structure of plants, especially at the microscopic level.[2] Plant morphology is useful in the visual identification of plants.

Inflorescences emerging from protective coverings

Scope[edit]

Asclepias syriaca showing complex morphology of the flowers.
Looking up into the branch structure of a Pinus sylvestris tree

Plant morphology "represents a study of the development, form, and structure of plants, and, by implication, an attempt to interpret these on the basis of similarity of plan and origin."[3] There are four major areas of investigation in plant morphology, and each overlaps with another field of the biological sciences.

First of all, morphology is comparative, meaning that the morphologist examines structures in many different plants of the same or different species, then draws comparisons and formulates ideas about similarities. When structures in different species are believed to exist and develop as a result of common, inherited genetic pathways, those structures are termed homologous. For example, the leaves of pine, oak, and cabbage all look very different, but share certain basic structures and arrangement of parts. The homology of leaves is an easy conclusion to make. The plant morphologist goes further, and discovers that the spines of cactus also share the same basic structure and development as leaves in other plants, and therefore cactus spines are homologous to leaves as well. This aspect of plant morphology overlaps with the study of plant evolution and paleobotany.

Secondly, plant morphology observes both the vegetative (somatic) structures of plants, as well as the reproductive structures. The vegetative structures of vascular plants includes the study of the shoot system, composed of stems and leaves, as well as the root system. The reproductive structures are more varied, and are usually specific to a particular group of plants, such as flowers and seeds, fern sori, and moss capsules. The detailed study of reproductive structures in plants led to the discovery of the alternation of generations found in all plants and most algae. This area of plant morphology overlaps with the study of biodiversity and plant systematics.

Thirdly, plant morphology studies plant structure at a range of scales. At the smallest scales are ultrastructure, the general structural features of cells visible only with the aid of an electron microscope, and cytology, the study of cells using optical microscopy. At this scale, plant morphology overlaps with plant anatomy as a field of study. At the largest scale is the study of plant growth habit, the overall architecture of a plant. The pattern of branching in a tree will vary from species to species, as will the appearance of a plant as a tree, herb, or grass.

Fourthly, plant morphology examines the pattern of development, the process by which structures originate and mature as a plant grows. While animals produce all the body parts they will ever have from early in their life, plants constantly produce new tissues and structures throughout their life. A living plant always has embryonic tissues. The way in which new structures mature as they are produced may be affected by the point in the plant's life when they begin to develop, as well as by the environment to which the structures are exposed. A morphologist studies this process, the causes, and its result. This area of plant morphology overlaps with plant physiology and ecology.

A comparative science[edit]

A plant morphologist makes comparisons between structures in many different plants of the same or different species. Making such comparisons between similar structures in different plants tackles the question of why the structures are similar. It is quite likely that similar underlying causes of genetics, physiology, or response to the environment have led to this similarity in appearance. The result of scientific investigation into these causes can lead to one of two insights into the underlying biology:

  1. Homology - the structure is similar between the two species because of shared ancestry and common genetics.
  2. Convergence - the structure is similar between the two species because of independent adaptation to common environmental pressures.

Understanding which characteristics and structures belong to each type is an important part of understanding plant evolution. The evolutionary biologist relies on the plant morphologist to interpret structures, and in turn provides phylogenies of plant relationships that may lead to new morphological insights.

Homology[edit]

Main article: Homology (biology)

When structures in different species are believed to exist and develop as a result of common, inherited genetic pathways, those structures are termed homologous. For example, the leaves of pine, oak, and cabbage all look very different, but share certain basic structures and arrangement of parts. The homology of leaves is an easy conclusion to make. The plant morphologist goes further, and discovers that the spines of cactus also share the same basic structure and development as leaves in other plants, and therefore cactus spines are homologous to leaves as well.

Convergence[edit]

Main article: Convergent evolution

When structures in different species are believed to exist and develop as a result of common adaptive responses to environmental pressure, those structures are termed convergent. For example, the fronds of Bryopsis plumosa and stems of Asparagus setaceus both have the same feathery branching appearance, even though one is an alga and one is a flowering plant. The similarity in overall structure occurs independently as a result of convergence. The growth form of many cacti and species of Euphorbia is very similar, even though they belong to widely distant families. The similarity results from common solutions to the problem of surviving in a hot, dry environment.

Vegetative and reproductive characteristics[edit]

A diagram representing a "typical" eudicot.
A diagram representing a "typical" eudicot.

Plant morphology treats both the vegetative structures of plants, as well as the reproductive structures.

The vegetative (somatic) structures of vascular plants include two major organ systems: (1) a shoot system, composed of stems and leaves, and (2) a root system. These two systems are common to nearly all vascular plants, and provide a unifying theme for the study of plant morphology.

By contrast, the reproductive structures are varied, and are usually specific to a particular group of plants. Structures such as flowers and fruits are only found in the angiosperms; sori are only found in ferns; and seed cones are only found in conifers and other gymnosperms. Reproductive characters are therefore regarded as more useful for the classification of plants than vegetative characters.

Use in identification[edit]

Main article: Identification key

Plant biologists use morphological characters of plants which can be compared, measured counted and described to assess the differences or similarities in plant taxa and use these characters for plant identification, classification and descriptions.

When characters are used in descriptions or for identification they are called diagnostic or key characters which can be either qualitative and quantitative.

  1. Quantitative characters are morphological features that can be counted or measured for example a plant species has flower petals 10–12 mm wide.
  2. Qualitative characters are morphological features such as leaf shape, flower color or pubescence.

Both kinds of characters can be very useful for the identification of plants.

Alternation of generations[edit]

The detailed study of reproductive structures in plants led to the discovery of the alternation of generations, found in all plants and most algae, by the German botanist Wilhelm Hofmeister. This discovery is one of the most important made in all of plant morphology, since it provides a common basis for understanding the life cycle of all plants.

Pigmentation in plants[edit]

Main article: Plant color

The primary function of pigments in plants is photosynthesis, which uses the green pigment chlorophyll along with several red and yellow pigments that help to capture as much light energy as possible. Pigments are also an important factor in attracting insects to flowers to encourage pollination.

Plant pigments include a variety of different kinds of molecule, including porphyrins, carotenoids, anthocyanins and betalains. All biological pigments selectively absorb certain wavelengths of light while reflecting others. The light that is absorbed may be used by the plant to power chemical reactions, while the reflected wavelengths of light determine the color the pigment will appear to the eye.

Development[edit]

Progressive sections of a stem, showing internal development and growth.[4]

Plant development is the process by which structures originate and mature as a plant grows. It is a subject studies in plant anatomy and plant physiology as well as plant morphology.

The process of development in plants is fundamentally different from that seen in vertebrate animals. When an animal embryo begins to develop, it will very early produce all of the body parts that it will ever have in its life. When the animal is born (or hatches from its egg), it has all its body parts and from that point will only grow larger and more mature. By contrast, plants constantly produce new tissues and structures throughout their life from meristems[5] located at the tips of organs, or between mature tissues. Thus, a living plant always has embryonic tissues.

The properties of organization seen in a plant are emergent properties which are more than the sum of the individual parts. "The assembly of these tissues and functions into an integrated multicellular organism yields not only the characteristics of the separate parts and processes but also quite a new set of characteristics which would not have been predictable on the basis of examination of the separate parts."[6] In other words, knowing everything about the molecules in a plant are not enough to predict characteristics of the cells; and knowing all the properties of the cells will not predict all the properties of a plant's structure.

Growth[edit]

A vascular plant begins from a single celled zygote, formed by fertilisation of an egg cell by a sperm cell. From that point, it begins to divide to form a plant embryo through the process of embryogenesis. As this happens, the resulting cells will organize so that one end becomes the first root, while the other end forms the tip of the shoot. In seed plants, the embryo will develop one or more "seed leaves" (cotyledons). By the end of embryogenesis, the young plant will have all the parts necessary to begin in its life.

Once the embryo germinates from its seed or parent plant, it begins to produce additional organs (leaves, stems, and roots) through the process of organogenesis. New roots grow from root meristems located at the tip of the root, and new stems and leaves grow from shoot meristems located at the tip of the shoot.[7] Branching occurs when small clumps of cells left behind by the meristem, and which have not yet undergone cellular differentiation to form a specialized tissue, begin to grow as the tip of a new root or shoot. Growth from any such meristem at the tip of a root or shoot is termed primary growth and results in the lengthening of that root or shoot. Secondary growth results in widening of a root or shoot from divisions of cells in a cambium.[8]

In addition to growth by cell division, a plant may grow through cell elongation. This occurs when individual cells or groups of cells grow longer. Not all plant cells will grow to the same length. When cells on one side of a stem grow longer and faster than cells on the other side, the stem will bend to the side of the slower growing cells as a result. This directional growth can occur via a plant's response to a particular stimulus, such as light (phototropism), gravity (gravitropism), water, (hydrotropism), and physical contact (thigmotropism).

Morphological variation[edit]

Plants exhibit natural variation in their form and structure. While all organisms vary from individual to individual, plants exhibit an additional type of variation. Within a single individual, parts are repeated which may differ in form and structure from other similar parts. This variation is most easily seen in the leaves of a plant, though other organs such as stems and flowers may show similar variation. There are three primary causes of this variation: positional effects, environmental effects, and juvenility.

Positional effects[edit]

Variation in leaves from the giant ragweed illustrating positional effects. The lobed leaves come from the base of the plant, while the unlobed leaves come from the top of the plant.

Although plants produce numerous copies of the same organ during their lives, not all copies of a particular organ will be identical. There is variation among the parts of a mature plant resulting from the relative position where the organ is produced. For example, along a new branch the leaves may vary in a consistent pattern along the branch. The form of leaves produced near the base of the branch will differ from leaves produced at the tip of the plant, and this difference is consistent from branch to branch on a given plant and in a given species. This difference persists after the leaves at both ends of the branch have matured, and is not the result of some leaves being younger than others.

Environmental effects[edit]

The way in which new structures mature as they are produced may be affected by the point in the plants life when they begin to develop, as well as by the environment to which the structures are exposed. This can be seen in aquatic plants and emergent plants.

Juvenility[edit]

Juvenility in a seedling of European beech. Notice the difference in shape between the first dark green "seed leaves" and the lighter second pair of leaves.

The organs and tissues produced by a young plant, such as a seedling, are often different from those that are produced by the same plant when it is older. This phenomenon is known as juvenility. For example, young trees will produce longer, leaner branches that grow upwards more than the branches they will produce as a fully grown tree. In addition, leaves produced during early growth tend to be larger, thinner, and more irregular than leaves on the adult plant. Specimens of juvenile plants may look so completely different from adult plants of the same species that egg-laying insects do not recognize the plant as food for their young. Differences are seen in rootability and flowering and can be seen in the same mature tree. Juvenile cuttings taken from the base of a tree will form roots much more readily than cuttings originating from the mid to upper crown. Flowering close to the base of a tree is absent of less profuse than flowering in the higher branches especially when a young tree first reaches flowering age.[9]

Some recent developments[edit]

Rolf Sattler has revised fundamental concepts of comparative morphology such as the concept of homology. He emphasized that homology should also include partial homology and quantitative homology.[10][11] This leads to a continuum morphology that demonstrates a continuum between the morphological categories of root, shoot, stem (caulome), leaf (phyllome), and hair (trichome). How intermediates between the categories are best described has been discussed by Bruce K. Kirchoff et al.[12]

Honoring Agnes Arber, author of the partial-shoot theory of the leaf, Rutishauser and Isler called the continuum approach Fuzzy Arberian Morphology (FAM). “Fuzzy” refers to fuzzy logic, “Arberian” to Agnes Arber. Rutishauser and Isler emphasized that this approach is not only supported by many morphological data but also by evidence from molecular genetics.[13] More recent evidence from molecular genetics provides further support for continuum morphology. James (2009) concluded that "it is now widely accepted that... radiality [characteristic of most shoots] and dorsiventrality [characteristic of leaves] are but extremes of a continuous spectrum. In fact, it is simply the timing of the KNOX gene expression!."[14] Eckardt and Baum (2010) concluded that "it is now generally accepted that compound leaves express both leaf and shoot properties.”.[15]

Process morphology (dynamic morphology) describes and analyzes the dynamic continuum of plant form. According to this approach, structures do not have process(es), they are process(es).[16][17] Thus, the structure/process dichotomy is overcome by "an enlargement of our concept of 'structure' so as to include and recognize that in the living organism it is not merely a question of spatial structure with an 'activity' as something over or against it, but that the concrete organism is a spatio-temporal structure and that this spatio-temporal structure is the activity itself."[18]

For Jeune, Barabé and Lacroix, classical morphology (that is, mainstream morphology, based on a qualitative homology concept implying mutually exclusive categories) and continuum morphology are sub-classes of the more encompassing process morphology (dynamic morphology).[19]

See also[edit]

References[edit]

  1. ^ a b Raven, P. H., R. F. Evert, & S. E. Eichhorn. Biology of Plants, 7th ed., page 9. (New York: W. H. Freeman, 2005). ISBN 0-7167-1007-2.
  2. ^ Evert, Ray Franklin and Esau, Katherine (2006) Esau's Plant anatomy: meristems, cells, and tissues of the plant body - their structure, function and development Wiley, Hoboken, New Jersey, page xv, ISBN 0-471-73843-3
  3. ^ Harold C. Bold, C. J. Alexopoulos, and T. Delevoryas. Morphology of Plants and Fungi, 5th ed., page 3. (New York: Harper-Collins, 1987). ISBN 0-06-040839-1.
  4. ^ Winterborne J, 2005. Hydroponics - Indoor Horticulture
  5. ^ Bäurle, I; Laux, T (2003). "Apical meristems: The plant's fountain of youth". BioEssays : news and reviews in molecular, cellular and developmental biology 25 (10): 961–70. doi:10.1002/bies.10341. PMID 14505363.  Review.
  6. ^ Leopold, A. C. Plant Growth and Development, page 183. (New York: McGraw-Hill, 1964).
  7. ^ Brand, U; Hobe, M; Simon, R (2001). "Functional domains in plant shoot meristems". BioEssays : news and reviews in molecular, cellular and developmental biology 23 (2): 134–41. doi:10.1002/1521-1878(200102)23:2<134::AID-BIES1020>3.0.CO;2-3. PMID 11169586.  Review.
  8. ^ Barlow, P (2005). "Patterned cell determination in a plant tissue: The secondary phloem of trees". BioEssays : news and reviews in molecular, cellular and developmental biology 27 (5): 533–41. doi:10.1002/bies.20214. PMID 15832381. 
  9. ^ Michael A Dirr; Charles W Heuser, jr. (2006). "2". The Reference Manual of Woody Plant Propagation (in English) (Second ed.). Varsity Press Inc. pp. 26, 28, 29. ISBN 0942375092. 
  10. ^ Sattler, R. (1984). "Homology - a continuing challenge". Systematic Botany 9 (4): 382–394. doi:10.2307/2418787. JSTOR 2418787. 
  11. ^ Sattler, R., 1994, Homology, homeosis, and process morphology in plants. In: B.K. Hall (ed.) Homology: The hierarchical basis of comparative morphology. New York: Academic Press, pp. 423-475.
  12. ^ Kirchoff, B K; Pfeifer, E; Rutishauser, R (2008). "Plant structure ontology: How should we label plant structures with doubtful or mixed identities?". Zootaxa 1950: 103–122. doi:10.5167/uzh-11204. 
  13. ^ Rutishauser, Rolf; Isler, Brigitte (2001). "Developmental Genetics and Morphological Evolution of Flowering Plants, Especially Bladderworts (Utricularia): Fuzzy Arberian Morphology Complements Classical Morphology". Annals of Botany 88 (6): 1173. doi:10.1006/anbo.2001.1498. 
  14. ^ James, P. J. 2009. 'Tree and Leaf': A different angle. The Linnean 25: 13-19.
  15. ^ Eckardt, NA; Koi, D; Kato, M (2010). "The Podostemad Puzzle: The Evolution of Unusual Morphology in the Podostemaceae". The Plant Cell 22 (7): 2131–2140. doi:10.1105/tpc.110.220711. PMC 2929115. PMID 20647344. 
  16. ^ Sattler, Rolf (1992). "Process morphology: Structural dynamics in development and evolution". Canadian Journal of Botany 70 (4): 708–714. doi:10.1139/b92-091. 
  17. ^ Vergara-Silva, Francisco (2003). Biology and Philosophy 18 (2): 261–264. doi:10.1023/A:1023936102602. 
  18. ^ Woodger, J.H. 1967. Biological Principles. London: Routledge & Kegoan Paul (reissued with a new Introduction).
  19. ^ Jeune, B; Barabé, D; Lacroix, C (2006). "Classical and dynamic morphology: Toward a synthesis through the space of forms". Acta biotheoretica 54 (4): 277–293. doi:10.1007/s10441-007-9007-8. PMID 17486414. 

External links[edit]


Wikipedia content is licensed under the GFDL License
Powered by YouTube
LEGAL
  • Mashpedia © 2014