This article is about the mass moment of inertia of a rotating object. For area moment of inertia in beam bending, see
Second moment of area.
Flywheels have large moments of inertia to smooth out mechanical motion. This example is in a Russian museum.
The moment of inertia, otherwise known as the angular mass or rotational inertia, of a rigid body is a tensor that determines the torque needed for a desired angular acceleration about a rotational axis. It depends on the body's mass distribution and the axis chosen, with larger moments requiring more torque to change the body's rotation. It is an extensive (additive) property: the moment of inertia of a rigid composite system is the sum of the moments of inertia of its component subsystems (all taken about the same axis). One of its definitions is the second moment of mass with respect to distance from an axis r, $I=\int _{Q}r^{2}\mathrm {d} m$, integrating over the entire mass $Q$.
For bodies constrained to rotate in a plane, it is sufficient to consider their moment of inertia about an axis perpendicular to the plane. For bodies free to rotate in three dimensions, their moments can be described by a symmetric 3 × 3 matrix; each body has a set of mutually perpendicular principal axes for which this matrix is diagonal and torques around the axes act independently of each other.
Introduction[edit]
When a body is rotating, or free to rotate, around an axis, a torque must be applied to change its angular momentum. The amount of torque needed to cause any given angular acceleration (the rate of change in angular velocity) is proportional to the moment of inertia of the body. Moment of inertia may be expressed in units of kilogram metre squared (kg·m^{2}) in SI units and poundsquare feet (lb·ft^{2}) in imperial or US units.
Moment of inertia plays the role in rotational kinetics that mass (inertia) plays in linear kinetics  both characterize the resistance of a body to changes in its motion. The moment of inertia depends on how mass is distributed around an axis of rotation, and will vary depending on the chosen axis. For a pointlike mass, the moment of inertia about some axis is given by $mr^{2}$, where $r$ is the distance of the point from the axis, and $m$ is the mass. For an extended rigid body, the moment of inertia is just the sum of all the small pieces of mass multiplied by the square of their distances from the axis in question. For an extended body of a regular shape and uniform density, this summation sometimes produces a simple expression that depends on the dimensions, shape and total mass of the object.
In 1673 Christiaan Huygens introduced this parameter in his study of the oscillation of a body hanging from a pivot, known as a compound pendulum.^{[1]} The term moment of inertia was introduced by Leonhard Euler in his book Theoria motus corporum solidorum seu rigidorum in 1765,^{[1]}^{[2]} and it is incorporated into Euler's second law.
The natural frequency of oscillation of a compound pendulum is obtained from the ratio of the torque imposed by gravity on the mass of the pendulum to the resistance to acceleration defined by the moment of inertia. Comparison of this natural frequency to that of a simple pendulum consisting of a single point of mass provides a mathematical formulation for moment of inertia of an extended body.^{[3]}^{[4]}
Moment of inertia also appears in momentum, kinetic energy, and in Newton's laws of motion for a rigid body as a physical parameter that combines its shape and mass. There is an interesting difference in the way moment of inertia appears in planar and spatial movement. Planar movement has a single scalar that defines the moment of inertia, while for spatial movement the same calculations yield a 3 × 3 matrix of moments of inertia, called the inertia matrix or inertia tensor.^{[5]}^{[6]}
The moment of inertia of a rotating flywheel is used in a machine to resist variations in applied torque to smooth its rotational output. The moment of inertia of an airplane about its longitudinal, horizontal and vertical axis determines how steering forces on the control surfaces of its wings, elevators and tail affect the plane in roll, pitch and yaw.
Definition[edit]
Video of rotating chair experiment, illustrating moment of inertia. When the spinning professor pulls his arms, his moment of inertia decreases; to conserve angular momentum, his angular velocity increases.
Moment of inertia I is defined as the ratio of the angular momentum L of a system to its angular velocity ω around a principal axis,^{[7]}^{[8]} that is
 $I={\frac {L}{\omega }}.$
If the angular momentum of a system is constant, then as the moment of inertia gets smaller, the angular velocity must increase. This occurs when spinning figure skaters pull in their outstretched arms or divers curl their bodies into a tuck position during a dive, to spin faster.^{[7]}^{[8]}^{[9]}^{[10]}^{[11]}^{[12]}^{[13]}
If the shape of the body does not change, then its moment of inertia appears in Newton's law of motion as the ratio of an applied torque τ on a body to the angular acceleration α around a principal axis, that is
 $\tau =I\alpha .$
For a simple pendulum, this definition yields a formula for the moment of inertia I in terms of the mass m of the pendulum and its distance r from the pivot point as,
 $I=mr^{2}.$
Thus, moment of inertia depends on both the mass m of a body and its geometry, or shape, as defined by the distance r to the axis of rotation.
This simple formula generalizes to define moment of inertia for an arbitrarily shaped body as the sum of all the elemental point masses dm each multiplied by the square of its perpendicular distance r to an axis k̂.
In general, given an object of mass m, an effective radius k can be defined for an axis through its center of mass, with such a value that its moment of inertia is
 $I=mk^{2},$
where k is known as the radius of gyration.
Examples[edit]
Simple pendulum[edit]
Moment of inertia can be measured using a simple pendulum, because it is the resistance to the rotation caused by gravity. Mathematically, the moment of inertia of the pendulum is the ratio of the torque due to gravity about the pivot of a pendulum to its angular acceleration about that pivot point. For a simple pendulum this is found to be the product of the mass of the particle m with the square of its distance r to the pivot, that is
 $I=mr^{2}.$
This can be shown as follows: The force of gravity on the mass of a simple pendulum generates a torque ${\boldsymbol {\tau }}=\mathbf {r} \times \mathbf {F}$ around the axis perpendicular to the plane of the pendulum movement. Here r is the distance vector perpendicular to and from the force to the torque axis. Here F is the tangential component of the net force on the mass. Associated with this torque is an angular acceleration, ${\boldsymbol {\alpha }}$, of the string and mass around this axis. Since the mass is constrained to a circle the tangential acceleration of the mass is ${\mathbf {a}}={\boldsymbol {\alpha }}\times {\mathbf {r}}$. Since $F=ma$ the torque equation becomes:
 ${\boldsymbol {\tau }}=\mathbf {r} \times \mathbf {F} =\mathbf {r} \times (m{\boldsymbol {\alpha }}\times {\mathbf {r}})=\left(mr^{2}\right){\boldsymbol {\alpha }}=I\alpha \mathbf {\hat {k}} ,$
where k̂ is a unit vector perpendicular to the plane of the pendulum. (The second to the last step occurs because of the BACCAB rule using the fact that ${\boldsymbol {\alpha }}$ is always perpendicular to r.) The quantity I = mr^{2} is the moment of inertia of this single mass around the pivot point.
The quantity I = mr^{2} also appears in the angular momentum of a simple pendulum, which is calculated from the velocity v = ω × r of the pendulum mass around the pivot, where ω is the angular velocity of the mass about the pivot point. This angular momentum is given by
 $\mathbf {L} =\mathbf {r} \times (m\mathbf {v} )=\left(mr^{2}\right){\boldsymbol {\omega }}=I\omega \mathbf {\hat {k}} ,$
using math similar to that used to derive the previous equation.
Similarly, the kinetic energy of the pendulum mass is defined by the velocity of the pendulum around the pivot to yield
 $E_{\text{K}}={\frac {1}{2}}m\mathbf {v} \cdot \mathbf {v} ={\frac {1}{2}}\left(mr^{2}\right)\omega ^{2}={\frac {1}{2}}I\omega ^{2}.$
This shows that the quantity I = mr^{2} is how mass combines with the shape of a body to define rotational inertia. The moment of inertia of an arbitrarily shaped body is the sum of the values mr^{2} for all of the elements of mass in the body.
Compound pendulum[edit]
Pendulums used in Mendenhall
gravimeter apparatus, from 1897 scientific journal. The portable gravimeter developed in 1890 by Thomas C. Mendenhall provided the most accurate relative measurements of the local gravitational field of the Earth.
A compound pendulum is a body formed from an assembly of particles of continuous shape that rotates rigidly around a pivot. Its moment of inertia is the sum of the moments of inertia of each of the particles that it is composed of.^{[14]}^{[15]}^{:395–396}^{[16]}^{:51–53} The natural frequency ($\omega _{n}$) of a compound pendulum depends on its moment of inertia, $I_{\text{P}}$,
 $\omega _{n}={\sqrt {\frac {mgr}{I_{\text{P}}}}},$
where $m$ is the mass of the object, $g$ is local acceleration of gravity, and $r$ is the distance from the pivot point to the centre of mass of the object. Measuring this frequency of oscillation over small angular displacements provides an effective way of measuring moment of inertia of a body.^{[17]}^{:516–517}
Thus, to determine the moment of inertia of the body, simply suspend it from a convenient pivot point ${\text{P}}$ so that it swings freely in a plane perpendicular to the direction of the desired moment of inertia, then measure its natural frequency or period of oscillation ($t$), to obtain
 $I_{\text{P}}={\frac {mgr}{\omega _{n}^{2}}}={\frac {mgrt^{2}}{4\pi ^{2}}},$
where $t$ is the period (duration) of oscillation (usually averaged over multiple periods).
The moment of inertia of the body about its centre of mass, $I_{\text{C}}$, is then calculated using the parallel axis theorem to be
 $I_{\text{C}}=I_{\text{P}}mr^{2},$
where $m$ is the mass of the body and $r$ is the distance from the pivot point ${\text{P}}$ to the centre of mass ${\text{C}}$.
Moment of inertia of a body is often defined in terms of its radius of gyration, which is the radius of a ring of equal mass around the centre of mass of a body that has the same moment of inertia. The radius of gyration $K$ is calculated from the body's moment of inertia $I_{\text{C}}$ and mass $m$ as the length^{[18]}^{:1296–1297}
 $K={\sqrt {\frac {I_{\text{C}}}{m}}}.$
Centre of oscillation[edit]
A simple pendulum that has the same natural frequency as a compound pendulum defines the length $L$ from the pivot to a point called the centre of oscillation of the compound pendulum. This point also corresponds to the centre of percussion. The length $L$ is determined from the formula,
 $\omega _{n}={\sqrt {\frac {g}{L}}}={\sqrt {\frac {mgr}{I_{\text{P}}}}},$
or
 $L={\frac {g}{\omega _{n}^{2}}}={\frac {I_{\text{P}}}{mr}}.$
The seconds pendulum, which provides the "tick" and "tock" of a grandfather clock, takes one second to swing from sidetoside. This is a period of two seconds, or a natural frequency of π radians/second for the pendulum. In this case, the distance to the center of oscillation, $L$, can be computed to be
 $L={\frac {g}{\omega _{n}^{2}}}\approx {\frac {9.81\ \mathrm {m/s^{2}} }{(3.14\ \mathrm {rad/s} )^{2}}}\approx 0.99\ \mathrm {m} .$
Notice that the distance to the center of oscillation of the seconds pendulum must be adjusted to accommodate different values for the local acceleration of gravity. Kater's pendulum is a compound pendulum that uses this property to measure the local acceleration of gravity, and is called a gravimeter.
Measuring moment of inertia[edit]
The moment of inertia of a complex system such as a vehicle or airplane around its vertical axis can be measured by suspending the system from three points to form a trifilar pendulum. A trifilar pendulum is a platform supported by three wires designed to oscillate in torsion around its vertical centroidal axis.^{[19]} The period of oscillation of the trifilar pendulum yields the moment of inertia of the system.^{[20]}
Motion in a fixed plane[edit]
Point mass[edit]
Four objects with identical masses and radii racing down a plane while rolling without slipping.
From back to front:
 spherical shell,
 solid sphere,
 cylindrical ring, and
 solid cylinder.
The time for each object to reach the finishing line depends on their moment of inertia. (
OGV version)
The moment of inertia about an axis of a body is calculated by summing mr^{2} for every particle in the body, where r is the perpendicular distance to the specified axis. To see how moment of inertia arises in the study of the movement of an extended body, it is convenient to consider a rigid assembly of point masses. (This equation can be used for axes that are not principal axes provided that it is understood that this does not fully describe the moment of inertia.^{[21]})
Consider the kinetic energy of an assembly of N masses m_{i} that lie at the distances r_{i} from the pivot point P, which is the nearest point on the axis of rotation. It is the sum of the kinetic energy of the individual masses,^{[17]}^{:516–517}^{[18]}^{:1084–1085} ^{[18]}^{:1296–1300}
 $E_{\text{K}}=\left(\sum _{i=1}^{N}{\frac {1}{2}}\,m_{i}\mathbf {v} _{i}\cdot \mathbf {v} _{i}\right)=\left(\sum _{i=1}^{N}{\frac {1}{2}}\,m_{i}\left(\omega r_{i}\right)^{2}\right)={\frac {1}{2}}\,\omega ^{2}\sum _{i=1}^{N}m_{i}r_{i}^{2}.$
This shows that the moment of inertia of the body is the sum of each of the mr^{2} terms, that is
 $I_{P}=\sum _{i=1}^{N}m_{i}r_{i}^{2}.$
Thus, moment of inertia is a physical property that combines the mass and distribution of the particles around the rotation axis. Notice that rotation about different axes of the same body yield different moments of inertia.
The moment of inertia of a continuous body rotating about a specified axis is calculated in the same way, except with infinitely many point particles. Thus the limits of summation are removed, and the sum is written as follows:
 $I_{P}=\sum _{i}m_{i}r_{i}^{2}$
Another expression replaces the summation with an integral,
 $I_{P}=\iiint \limits _{Q}\rho \left(x,y,z\right)\left\\mathbf {r} \right\^{2}\mathrm {d} V$
Here, the function ρ gives the mass density at each point (x, y, z), r is a vector perpendicular to the axis of rotation and extending from a point on the rotation axis to a point (x, y, z) in the solid, and the integration is evaluated over the volume V of the body Q. The moment of inertia of a flat surface is similar with the mass density being replaced by its areal mass density with the integral evaluated over its area.
Note on second moment of area: The moment of inertia of a body moving in a plane and the second moment of area of a beam's crosssection are often confused. The moment of inertia of body with the shape of the crosssection is the second moment of this area about the zaxis perpendicular to the crosssection, weighted by its density. This is also called the polar moment of the area, and is the sum of the second moments about the x and yaxes.^{[22]} The stresses in a beam are calculated using the second moment of the crosssectional area around either the xaxis or yaxis depending on the load.
Examples[edit]
The moment of inertia of a compound pendulum constructed from a thin disc mounted at the end of a thin rod that oscillates around a pivot at the other end of the rod, begins with the calculation of the moment of inertia of the thin rod and thin disc about their respective centres of mass.^{[18]}
 The moment of inertia of a thin rod with constant crosssection s and density ρ and with length ℓ about a perpendicular axis through its centre of mass is determined by integration.^{[18]}^{:1301} Align the xaxis with the rod and locate the origin its centre of mass at the centre of the rod, then
 $I_{C,{\text{rod}}}=\iiint \limits _{Q}\rho \,x^{2}\,\mathrm {d} V=\int _{{\frac {\ell }{2}}}^{\frac {\ell }{2}}\rho \,x^{2}s\,\mathrm {d} x=\left.\rho s{\frac {x^{3}}{3}}\right_{{\frac {\ell }{2}}}^{\frac {\ell }{2}}={\frac {\rho s}{3}}\left({\frac {\ell ^{3}}{8}}+{\frac {\ell ^{3}}{8}}\right)={\frac {m\ell ^{2}}{12}},$
where m = ρsℓ is the mass of the rod.
 The moment of inertia of a thin disc of constant thickness s, radius R, and density ρ about an axis through its centre and perpendicular to its face (parallel to its axis of rotational symmetry) is determined by integration.^{[18]}^{:1301} Align the zaxis with the axis of the disc and define a volume element as dV = sr drdθ, then
 $I_{C,{\text{disc}}}=\iiint \limits _{Q}\rho \,r^{2}\,\mathrm {d} V=\int _{0}^{2\pi }\int _{0}^{R}\rho r^{2}sr\,\mathrm {d} r\,\mathrm {d} \theta =2\pi \rho s{\frac {R^{4}}{4}}={\frac {1}{2}}mR^{2},$
where m = πR^{2}ρs is its mass.
 The moment of inertia of the compound pendulum is now obtained by adding the moment of inertia of the rod and the disc around the pivot point P as,
 $I_{P}=I_{C,{\text{rod}}}+M_{\text{rod}}\left({\frac {L}{2}}\right)^{2}+I_{C,{\text{disc}}}+M_{\text{disc}}(L+R)^{2},$
where L is the length of the pendulum. Notice that the parallel axis theorem is used to shift the moment of inertia from the centre of mass to the pivot point of the pendulum.
A list of moments of inertia formulas for standard body shapes provides a way to obtain the moment of inertia of a complex body as an assembly of simpler shaped bodies. The parallel axis theorem is used to shift the reference point of the individual bodies to the reference point of the assembly.
As one more example, consider the moment of inertia of a solid sphere of constant density about an axis through its centre of mass. This is determined by summing the moments of inertia of the thin discs that form the sphere. If the surface of the ball is defined by the equation^{[18]}^{:1301}
 $x^{2}+y^{2}+z^{2}=R^{2},$
then the radius r of the disc at the crosssection z along the zaxis is
 $r(z)^{2}=x^{2}+y^{2}=R^{2}z^{2}.$
Therefore, the moment of inertia of the ball is the sum of the moments of inertia of the discs along the zaxis,
 ${\begin{aligned}I_{C,{\text{ball}}}&=\int _{R}^{R}{\frac {\pi \rho }{2}}r(z)^{4}\,\mathrm {d} z=\int _{R}^{R}{\frac {\pi \rho }{2}}\left(R^{2}z^{2}\right)^{2}\,\mathrm {d} z\\&=\left.{\frac {\pi \rho }{2}}\left(R^{4}z{\frac {2}{3}}R^{2}z^{3}+{\frac {1}{5}}z^{5}\right)\right_{R}^{R}\\&=\pi \rho \left(1{\frac {2}{3}}+{\frac {1}{5}}\right)R^{5}\\&={\frac {2}{5}}mR^{2},\end{aligned}}$
where m = 4/3πR^{3}ρ is the mass of the sphere.
Rigid body[edit]
If a mechanical system is constrained to move parallel to a fixed plane, then the rotation of a body in the system occurs around an axis k̂ perpendicular to this plane. In this case, the moment of inertia of the mass in this system is a scalar known as the polar moment of inertia. The definition of the polar moment of inertia can be obtained by considering momentum, kinetic energy and Newton's laws for the planar movement of a rigid system of particles.^{[14]}^{[17]}^{[23]}^{[24]}
If a system of n particles, P_{i}, i = 1, …, n, are assembled into a rigid body, then the momentum of the system can be written in terms of positions relative to a reference point R, and absolute velocities v_{i}
 ${\begin{aligned}\Delta \mathbf {r} _{i}&=\mathbf {r} _{i}\mathbf {R} ,\\\mathbf {v} _{i}&={\boldsymbol {\omega }}\times \left(\mathbf {r} _{i}\mathbf {R} \right)+\mathbf {V} ={\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} ,\end{aligned}}$
where ω is the angular velocity of the system and V is the velocity of R.
For planar movement the angular velocity vector is directed along the unit vector k which is perpendicular to the plane of movement. Introduce the unit vectors e_{i} from the reference point R to a point r_{i} , and the unit vector t̂_{i} = k̂ × ê_{i} so
 ${\begin{aligned}\mathbf {\hat {e}} _{i}&={\frac {\Delta \mathbf {r} _{i}}{\Delta r_{i}}},\quad \mathbf {\hat {k}} ={\frac {\boldsymbol {\omega }}{\omega }},\quad \mathbf {\hat {t}} _{i}=\mathbf {\hat {k}} \times \mathbf {\hat {e}} _{i},\\\mathbf {v} _{i}&={\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} =\omega \mathbf {\hat {k}} \times \Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {V} =\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \end{aligned}}$
This defines the relative position vector and the velocity vector for the rigid system of the particles moving in a plane.
Note on the cross product: When a body moves parallel to a ground plane, the trajectories of all the points in the body lie in planes parallel to this ground plane. This means that any rotation that the body undergoes must be around an axis perpendicular to this plane. Planar movement is often presented as projected onto this ground plane so that the axis of rotation appears as a point. In this case, the angular velocity and angular acceleration of the body are scalars and the fact that they are vectors along the rotation axis is ignored. This is usually preferred for introductions to the topic. But in the case of moment of inertia, the combination of mass and geometry benefits from the geometric properties of the cross product. For this reason, in this section on planar movement the angular velocity and accelerations of the body are vectors perpendicular to the ground plane, and the cross product operations are the same as used for the study of spatial rigid body movement.
Angular momentum[edit]
The angular momentum vector for the planar movement of a rigid system of particles is given by^{[14]}^{[17]}
 ${\begin{aligned}\mathbf {L} &=\left(\sum _{i=1}^{n}m_{i}\Delta \mathbf {r} _{i}\times \mathbf {v} _{i}\right)\\&=\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\times \left(\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \right)\right)\\&=\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}^{2}\right)\omega \mathbf {\hat {k}} +\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\right)\times \mathbf {V} .\end{aligned}}$
Use the centre of mass C as the reference point so
 ${\begin{aligned}\Delta r_{i}\mathbf {\hat {e}} _{i}&=\mathbf {r} _{i}\mathbf {C} ,\\\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\right)&=0,\end{aligned}}$
and define the moment of inertia relative to the centre of mass I_{C} as
 $I_{\mathbf {C} }=\sum _{i}m_{i}\,\Delta r_{i}^{2},$
then the equation for angular momentum simplifies to^{[18]}^{:1028}
 $\mathbf {L} =I_{\mathbf {C} }\omega \mathbf {\hat {k}} .$
The moment of inertia I_{C} about an axis perpendicular to the movement of the rigid system and through the centre of mass is known as the polar moment of inertia. Specifically, it is the second moment of mass with respect to the orthogonal distance from an axis (or pole).
For a given amount of angular momentum, a decrease in the moment of inertia results in an increase in the angular velocity. Figure skaters can change their moment of inertia by pulling in their arms. Thus, the angular velocity achieved by a skater with outstretched arms results in a greater angular velocity when the arms are pulled in, because of the reduced moment of inertia. A figure skater is not, however, a rigid body.
Kinetic energy[edit]
This 1906 rotary shear uses the moment of inertia of two flywheels to store kinetic energy which when released is used to cut metal stock (International Library of Technology, 1906).
The kinetic energy of a rigid system of particles moving in the plane is given by^{[14]}^{[17]}
 ${\begin{aligned}E_{\text{K}}&={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\mathbf {v} _{i}\cdot \mathbf {v} _{i}\right),\\&={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left(\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \right)\cdot \left(\omega \,\Delta r_{i}\mathbf {\hat {t}} _{i}+\mathbf {V} \right)\right),\\&={\frac {1}{2}}\omega ^{2}\left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}^{2}\mathbf {\hat {t}} _{i}\cdot \mathbf {\hat {t}} _{i}\right)+\omega \mathbf {V} \cdot \left(\sum _{i=1}^{n}m_{i}\,\Delta r_{i}\mathbf {\hat {t}} _{i}\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} \cdot \mathbf {V} .\end{aligned}}$
Let the reference point be the centre of mass C of the system so the second term becomes zero, and introduce the moment of inertia I_{C} so the kinetic energy is given by^{[18]}^{:1084}
 $E_{\text{K}}={\frac {1}{2}}I_{\mathbf {C} }\omega ^{2}+{\frac {1}{2}}M\mathbf {V} \cdot \mathbf {V} .$
The moment of inertia I_{C} is the polar moment of inertia of the body.
Newton's laws[edit]
A 1920s John Deere tractor with the spoked
flywheel on the engine. The large moment of inertia of the flywheel smooths the operation of the tractor
Newton's laws for a rigid system of N particles, P_{i}, i = 1, … N, can be written in terms of a resultant force and torque at a reference point R, to yield^{[14]}^{[17]}
 ${\begin{aligned}\mathbf {F} &=\left(\sum _{i=1}^{N}m_{i}\mathbf {A} _{i}\right),\\{\boldsymbol {\tau }}&=\left(\sum _{i=1}^{N}\Delta \mathbf {r} _{i}\times m_{i}\mathbf {A} _{i}\right),\end{aligned}}$
where r_{i} denotes the trajectory of each particle.
The kinematics of a rigid body yields the formula for the acceleration of the particle P_{i} in terms of the position R and acceleration A of the reference particle as well as the angular velocity vector ω and angular acceleration vector α of the rigid system of particles as,
 $\mathbf {A} _{i}={\boldsymbol {\alpha }}\times \Delta \mathbf {r} _{i}+{\boldsymbol {\omega }}\times {\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {A} .$
For systems that are constrained to planar movement, the angular velocity and angular acceleration vectors are directed along k̂ perpendicular to the plane of movement, which simplifies this acceleration equation. In this case, the acceleration vectors can be simplified by introducing the unit vectors ê_{i} from the reference point R to a point r_{i} and the unit vectors t̂_{i} = k̂ × ê_{i} , so
 ${\begin{aligned}\mathbf {A} _{i}&=\alpha \mathbf {\hat {k}} \times \Delta r_{i}\mathbf {\hat {e}} _{i}\omega \mathbf {\hat {k}} \times \omega \mathbf {\hat {k}} \times \Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {A} \\&=\alpha \Delta r_{i}\mathbf {\hat {t}} _{i}\omega ^{2}\Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {A} .\end{aligned}}$
This yields the resultant torque on the system as
 ${\begin{aligned}{\boldsymbol {\tau }}&=\left(\sum _{i=1}^{N}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\times \left(\alpha \Delta r_{i}\mathbf {\hat {t}} _{i}\omega ^{2}\Delta r_{i}\mathbf {\hat {e}} _{i}+\mathbf {A} \right)\right)\\&=\left(\sum _{i=1}^{N}m_{i}\,\Delta r_{i}^{2}\right)\alpha \mathbf {\hat {k}} +\left(\sum _{i=1}^{N}m_{i}\,\Delta r_{i}\mathbf {\hat {e}} _{i}\right)\times \mathbf {A} ,\end{aligned}}$
where ê_{i} × ê_{i} = 0, and ê_{i} × t̂_{i} = k̂ is the unit vector perpendicular to the plane for all of the particles P_{i}.
Use the centre of mass C as the reference point and define the moment of inertia relative to the centre of mass I_{C}, then the equation for the resultant torque simplifies to^{[18]}^{:1029}
 ${\boldsymbol {\tau }}=I_{\mathbf {C} }\alpha \mathbf {\hat {k}} .$
Motion in space of a rigid body, and the inertia matrix[edit]
The scalar moments of inertia appear as elements in a matrix when a system of particles is assembled into a rigid body that moves in threedimensional space. This inertia matrix appears in the calculation of the angular momentum, kinetic energy and resultant torque of the rigid system of particles.^{[3]}^{[4]}^{[5]}^{[6]}^{[25]}
Let the system of particles P_{i}, i = 1, …, n be located at the coordinates r_{i} with velocities v_{i} relative to a fixed reference frame. For a (possibly moving) reference point R, the relative positions are
 $\Delta \mathbf {r} _{i}=\mathbf {r} _{i}\mathbf {R}$
and the (absolute) velocities are
 $\mathbf {v} _{i}={\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {R} }$
where ω is the angular velocity of the system, and V_{R} is the velocity of R.
Angular momentum[edit]
Note that the cross product can be equivalently written as matrix multiplication by combining the first operand and the operator into a, skewsymmetric, matrix, [b], constructed from the components of b = (b_{x}, b_{y}, b_{z}):
 ${\begin{aligned}\mathbf {b} \times \mathbf {y} &\equiv \lbrack \mathbf {b} \rbrack \mathbf {y} \\\lbrack \mathbf {b} \rbrack &\equiv {\begin{bmatrix}0&b_{z}&b_{y}\\b_{z}&0&b_{x}\\b_{y}&b_{x}&0\end{bmatrix}}.\end{aligned}}$
The inertia matrix is constructed by considering the angular momentum, with the reference point R of the body chosen to be the centre of mass C:^{[3]}^{[6]}
 ${\begin{aligned}\mathbf {L} &=\left(\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \mathbf {v} _{i}\right)\\&=\left(\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {R} }\right)\right)\\&=\left(\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \left(\Delta \mathbf {r} _{i}\times {\boldsymbol {\omega }}\right)\right)+\left(\sum _{i=1}^{n}m_{i}\,\Delta \mathbf {r} _{i}\times \mathbf {V} _{\mathbf {R} }\right),\end{aligned}}$
where the terms containing V_{R} (= C) sum to zero by the definition of centre of mass.
Then, the skewsymmetric matrix [Δr_{i}] obtained from the relative position vector Δr_{i} = r_{i} − C, can be used to define,
 $\mathbf {L} =\left(\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}=\mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }},$
where I_{C} defined by
 $\mathbf {I} _{\mathbf {C} }=\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2},$
is the symmetric inertia matrix of the rigid system of particles measured relative to the centre of mass C.
Kinetic energy[edit]
The kinetic energy of a rigid system of particles can be formulated in terms of the centre of mass and a matrix of mass moments of inertia of the system. Let the system of particles P_{i}, i = 1, …,n be located at the coordinates r_{i} with velocities v_{i}, then the kinetic energy is^{[3]}^{[6]}
 $E_{\text{K}}={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\mathbf {v} _{i}\cdot \mathbf {v} _{i}\right)={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {C} }\right)\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}+\mathbf {V} _{\mathbf {C} }\right)\right),$
where Δr_{i} = r_{i} − C is the position vector of a particle relative to the centre of mass.
This equation expands to yield three terms
 $E_{\text{K}}={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+\left(\sum _{i=1}^{n}m_{i}\mathbf {V} _{\mathbf {C} }\cdot \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\right).$
The second term in this equation is zero because C is the centre of mass. Introduce the skewsymmetric matrix [Δr_{i}] so the kinetic energy becomes
 ${\begin{aligned}E_{\text{K}}&={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left(\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\cdot \left(\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\\&={\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\left({\boldsymbol {\omega }}^{\mathrm {T} }\left[\Delta \mathbf {r} _{i}\right]^{\mathrm {T} }\left[\Delta \mathbf {r} _{i}\right]{\boldsymbol {\omega }}\right)\right)+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }\\&={\frac {1}{2}}{\boldsymbol {\omega }}\cdot \left(\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}+{\frac {1}{2}}\left(\sum _{i=1}^{n}m_{i}\right)\mathbf {V} _{\mathbf {C} }\cdot \mathbf {V} _{\mathbf {C} }.\end{aligned}}$
Thus, the kinetic energy of the rigid system of particles is given by
 $E_{\text{K}}={\frac {1}{2}}{\boldsymbol {\omega }}\cdot \mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }}+{\frac {1}{2}}M\mathbf {V} _{\mathbf {C} }^{2}.$
where I_{C} is the inertia matrix relative to the centre of mass and M is the total mass.
Resultant torque[edit]
The inertia matrix appears in the application of Newton's second law to a rigid assembly of particles. The resultant torque on this system is,^{[3]}^{[6]}
 ${\boldsymbol {\tau }}=\left(\sum _{i=1}^{n}\left(\mathbf {r_{i}} \mathbf {R} \right)\times m_{i}\mathbf {a} _{i}\right),$
where a_{i} is the acceleration of the particle P_{i}. The kinematics of a rigid body yields the formula for the acceleration of the particle P_{i} in terms of the position R and acceleration A_{r} of the reference point, as well as the angular velocity vector ω and angular acceleration vector α of the rigid system as,
 $\mathbf {a} _{i}={\boldsymbol {\alpha }}\times \left(\mathbf {r} _{i}\mathbf {R} \right)+{\boldsymbol {\omega }}\times {\boldsymbol {\omega }}\times \left(\mathbf {r} _{i}\mathbf {R} \right)+\mathbf {A} _{\mathbf {R} }.$
Use the centre of mass C as the reference point, and introduce the skewsymmetric matrix [Δr_{i}] = [r_{i} − C] to represent the cross product (r_{i} − C) ×, to obtain
 ${\boldsymbol {\tau }}=\left(\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \left(\sum _{i=1}^{n}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right){\boldsymbol {\omega }}$
The calculation uses the identity
 $\Delta \mathbf {r} _{i}\times \left({\boldsymbol {\omega }}\times \left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\right)+{\boldsymbol {\omega }}\times \left(\left({\boldsymbol {\omega }}\times \Delta \mathbf {r} _{i}\right)\times \Delta \mathbf {r} _{i}\right)=0,$
obtained from the Jacobi identity for the triple cross product as shown in the proof below:

Proof 
${\begin{aligned}{\boldsymbol {\tau }}&=\sum _{i=1}^{n}(\mathbf {r_{i}} \mathbf {R} )\times (m_{i}\mathbf {a} _{i})\\&=\sum _{i=1}^{n}{\boldsymbol {\Delta }}\mathbf {r} _{i}\times (m_{i}\mathbf {a} _{i})\\&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {a} _{i}]\;\ldots {\text{ crossproduct scalar multiplication}}\\&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times (\mathbf {a} _{{\text{tangential}},i}+\mathbf {a} _{{\text{centripetal}},i}+\mathbf {A} _{\mathbf {R} })]\\&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times (\mathbf {a} _{{\text{tangential}},i}+\mathbf {a} _{{\text{centripetal}},i}+0)]\\&\;\;\;\;\;\ldots \;\mathbf {R} {\text{ is either at rest or moving at a constant velocity but not accelerated, or }}\\&\;\;\;\;\;\;\;\;\;\;\;{\text{the origin of the fixed (world) coordinate reference system is placed at the centre of mass }}\mathbf {C} \\&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {a} _{{\text{tangential}},i}+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {a} _{{\text{centripetal}},i}]\;\ldots {\text{ crossproduct distributivity over addition}}\\&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times \mathbf {v} _{{\text{tangential}},i})]\\{\boldsymbol {\tau }}&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\\\end{aligned}}$
Then, the following Jacobi identity is used on the last term:
 ${\begin{aligned}0&={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\\&={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\;\ldots {\text{ crossproduct anticommutativity}}\\&={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})]\;\ldots {\text{ crossproduct scalar multiplication}}\\&={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+[0]\;\ldots {\text{ self crossproduct}}\\0&={\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))+{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\end{aligned}}$
The result of applying Jacobi identity can then be continued as follows:
 ${\begin{aligned}{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))&=[{\boldsymbol {\omega }}\times (({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\times {\boldsymbol {\Delta }}\mathbf {r} _{i})]\\&=[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}){\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\omega }}\cdot ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\;\ldots {\text{ vector triple product}}\\&=[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}){\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot ({\boldsymbol {\omega }}\times {\boldsymbol {\omega }}))]\;\ldots {\text{ scalar triple product}}\\&=[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}){\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot (0))]\;\ldots {\text{ self crossproduct}}\\&=[({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})]\\&=[{\boldsymbol {\omega }}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\;\ldots {\text{ crossproduct scalar multiplication}}\\&={\boldsymbol {\omega }}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\omega }}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}))\;\ldots {\text{ crossproduct scalar multiplication}}\\{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))&={\boldsymbol {\omega }}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }}))\;\ldots {\text{ dotproduct commutativity}}\\\end{aligned}}$
The final result can then be substituted to the main proof as follows:
 ${\begin{aligned}{\boldsymbol {\tau }}&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i}))]\\&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }}))]\\&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{0{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}]\\&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{[{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}){\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})]{\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}]\;\ldots \;{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}){\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})=0\\&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{[{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}){\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})]{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})\}]\;\ldots {\text{ addition associativity}}\\\end{aligned}}$
${\begin{aligned}\quad \quad &=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}){\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}{\boldsymbol {\omega }}\times {\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})]\;\ldots {\text{ crossproduct distributivity over addition}}\\&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}){\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})({\boldsymbol {\omega }}\times {\boldsymbol {\omega }})]\;\ldots {\text{ crossproduct scalar multiplication}}\\&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}){\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i})(0)]\;\ldots {\text{ self crossproduct}}\\&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\omega }}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\Delta }}\mathbf {r} _{i}){\boldsymbol {\Delta }}\mathbf {r} _{i}({\boldsymbol {\Delta }}\mathbf {r} _{i}\cdot {\boldsymbol {\omega }})\}]\\&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\alpha }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\omega }}\times {\boldsymbol {\Delta }}\mathbf {r} _{i})\}]\;\ldots {\text{ vector triple product}}\\&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\}]\;\ldots {\text{ crossproduct anticommutativity}}\\&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})+{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\}]\;\ldots {\text{ crossproduct scalar multiplication}}\\&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})]+\sum _{i=1}^{n}m_{i}[{\boldsymbol {\omega }}\times \{{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})\}]\;\ldots {\text{ summation distributivity}}\\{\boldsymbol {\tau }}&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})]+{\boldsymbol {\omega }}\times \sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})]\;\ldots \;{\boldsymbol {\omega }}{\text{ is not characteristic of particle }}P_{i}\end{aligned}}$
Notice that for any vector $\mathbf {u} \,$, the following holds:
 ${\begin{aligned}\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {u} )]&=\sum _{i=1}^{n}m_{i}\left({\begin{bmatrix}0&\Delta r_{3,i}&\Delta r_{2,i}\\\Delta r_{3,i}&0&\Delta r_{1,i}\\\Delta r_{2,i}&\Delta r_{1,i}&0\end{bmatrix}}\left({\begin{bmatrix}0&\Delta r_{3,i}&\Delta r_{2,i}\\\Delta r_{3,i}&0&\Delta r_{1,i}\\\Delta r_{2,i}&\Delta r_{1,i}&0\end{bmatrix}}{\begin{bmatrix}u_{1}\\u_{2}\\u_{3}\end{bmatrix}}\right)\right)\;\ldots {\text{ crossproduct as matrix multiplication}}\\[6pt]&=\sum _{i=1}^{n}m_{i}\left({\begin{bmatrix}0&\Delta r_{3,i}&\Delta r_{2,i}\\\Delta r_{3,i}&0&\Delta r_{1,i}\\\Delta r_{2,i}&\Delta r_{1,i}&0\end{bmatrix}}{\begin{bmatrix}\Delta r_{3,i}\,u_{2}+\Delta r_{2,i}\,u_{3}\\+\Delta r_{3,i}\,u_{1}\Delta r_{1,i}\,u_{3}\\\Delta r_{2,i}\,u_{1}+\Delta r_{1,i}\,u_{2}\end{bmatrix}}\right)\\[6pt]&=\sum _{i=1}^{n}m_{i}{\begin{bmatrix}\Delta r_{3,i}(+\Delta r_{3,i}\,u_{1}\Delta r_{1,i}\,u_{3})+\Delta r_{2,i}(\Delta r_{2,i}\,u_{1}+\Delta r_{1,i}\,u_{2})\\+\Delta r_{3,i}(\Delta r_{3,i}\,u_{2}+\Delta r_{2,i}\,u_{3})\Delta r_{1,i}(\Delta r_{2,i}\,u_{1}+\Delta r_{1,i}\,u_{2})\\\Delta r_{2,i}(\Delta r_{3,i}\,u_{2}+\Delta r_{2,i}\,u_{3})+\Delta r_{1,i}(+\Delta r_{3,i}\,u_{1}\Delta r_{1,i}\,u_{3})\end{bmatrix}}\\[6pt]&=\sum _{i=1}^{n}m_{i}{\begin{bmatrix}\Delta r_{3,i}^{2}\,u_{1}+\Delta r_{1,i}\Delta r_{3,i}\,u_{3}\Delta r_{2,i}^{2}\,u_{1}+\Delta r_{1,i}\Delta r_{2,i}\,u_{2}\\\Delta r_{3,i}^{2}\,u_{2}+\Delta r_{2,i}\Delta r_{3,i}\,u_{3}+\Delta r_{2,i}\Delta r_{1,i}\,u_{1}\Delta r_{1,i}^{2}\,u_{2}\\+\Delta r_{3,i}\Delta r_{2,i}\,u_{2}\Delta r_{2,i}^{2}\,u_{3}+\Delta r_{3,i}\Delta r_{1,i}\,u_{1}\Delta r_{1,i}^{2}\,u_{3}\end{bmatrix}}\\[6pt]&=\sum _{i=1}^{n}m_{i}{\begin{bmatrix}(\Delta r_{2,i}^{2}+\Delta r_{3,i}^{2})\,u_{1}+\Delta r_{1,i}\Delta r_{2,i}\,u_{2}+\Delta r_{1,i}\Delta r_{3,i}\,u_{3}\\+\Delta r_{2,i}\Delta r_{1,i}\,u_{1}(\Delta r_{1,i}^{2}+\Delta r_{3,i}^{2})\,u_{2}+\Delta r_{2,i}\Delta r_{3,i}\,u_{3}\\+\Delta r_{3,i}\Delta r_{1,i}\,u_{1}+\Delta r_{3,i}\Delta r_{2,i}\,u_{2}(\Delta r_{1,i}^{2}+\Delta r_{2,i}^{2})\,u_{3}\end{bmatrix}}\\[6pt]&=\sum _{i=1}^{n}m_{i}{\begin{bmatrix}(\Delta r_{2,i}^{2}+\Delta r_{3,i}^{2})&\Delta r_{1,i}\Delta r_{2,i}&\Delta r_{1,i}\Delta r_{3,i}\\\Delta r_{2,i}\Delta r_{1,i}&(\Delta r_{1,i}^{2}+\Delta r_{3,i}^{2})&\Delta r_{2,i}\Delta r_{3,i}\\\Delta r_{3,i}\Delta r_{1,i}&\Delta r_{3,i}\Delta r_{2,i}&(\Delta r_{1,i}^{2}+\Delta r_{2,i}^{2})\end{bmatrix}}{\begin{bmatrix}u_{1}\\u_{2}\\u_{3}\end{bmatrix}}\\&=\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\mathbf {u} \\[6pt]\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times \mathbf {u} )]&=\left(\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\right)\mathbf {u} \;\ldots \;\mathbf {u} {\text{ is not characteristic of }}P_{i}\end{aligned}}$
Finally, the result is used to complete the main proof as follows:
 ${\begin{aligned}{\boldsymbol {\tau }}&=\sum _{i=1}^{n}m_{i}[{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\alpha }})]+{\boldsymbol {\omega }}\times \sum _{i=1}^{n}m_{i}{\boldsymbol {\Delta }}\mathbf {r} _{i}\times ({\boldsymbol {\Delta }}\mathbf {r} _{i}\times {\boldsymbol {\omega }})]\\&=\left(\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\right){\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \left(\sum _{i=1}^{n}m_{i}[\Delta r_{i}]^{2}\right){\boldsymbol {\omega }}\end{aligned}}$

Thus, the resultant torque on the rigid system of particles is given by
 ${\boldsymbol {\tau }}=\mathbf {I} _{\mathbf {C} }{\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \mathbf {I} _{\mathbf {C} }{\boldsymbol {\omega }},$
where I_{C} is the inertia matrix relative to the centre of mass.
Parallel axis theorem[edit]
The inertia matrix of a body depends on the choice of the reference point. There is a useful relationship between the inertia matrix relative to the centre of mass C and the inertia matrix relative to another point R. This relationship is called the parallel axis theorem.^{[3]}^{[6]}
Consider the inertia matrix I_{R} obtained for a rigid system of particles measured relative to a reference point R, given by
 $\mathbf {I} _{\mathbf {R} }=\sum _{i=1}^{n}m_{i}\left[\mathbf {r} _{i}\mathbf {R} \right]^{2}.$
Let C be the centre of mass of the rigid system, then
 $\mathbf {R} =(\mathbf {R} \mathbf {C} )+\mathbf {C} =\mathbf {d} +\mathbf {C} ,$
where d is the vector from the centre of mass C to the reference point R. Use this equation to compute the inertia matrix,
 $\mathbf {I} _{\mathbf {R} }=\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}\left(\mathbf {C} +\mathbf {d} \right)]^{2}=\sum _{i=1}^{n}m_{i}[\left(\mathbf {r} _{i}\mathbf {C} \right)\mathbf {d} ]^{2}.$
Distribute over the cross product to obtain
 $\mathbf {I} _{\mathbf {R} }=\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}\mathbf {C} ]^{2}\right)+\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}\mathbf {C} ]\right)[\mathbf {d} ]+[\mathbf {d} ]\left(\sum _{i=1}^{n}m_{i}[\mathbf {r} _{i}\mathbf {C} ]\right)\left(\sum _{i=1}^{n}m_{i}\right)[\mathbf {d} ]^{2}.$
The first term is the inertia matrix I_{C} relative to the centre of mass. The second and third terms are zero by definition of the centre of mass C. And the last term is the total mass of the system multiplied by the square of the skewsymmetric matrix [d] constructed from d.
The result is the parallel axis theorem,
 $\mathbf {I} _{\mathbf {R} }=\mathbf {I} _{\mathbf {C} }M[\mathbf {d} ]^{2},$
where d is the vector from the centre of mass C to the reference point R.
Note on the minus sign: By using the skew symmetric matrix of position vectors relative to the reference point, the inertia matrix of each particle has the form −m[r]^{2}, which is similar to the mr^{2} that appears in planar movement. However, to make this to work out correctly a minus sign is needed. This minus sign can be absorbed into the term m[r]^{T}[r], if desired, by using the skewsymmetry property of [r].
Scalar moment of inertia in a plane[edit]
The scalar moment of inertia, I_{L}, of a body about a specified axis whose direction is specified by the unit vector k̂ and passes through the body at a point R is as follows:^{[6]}
 $I_{L}=\mathbf {\hat {k}} \cdot \left(\sum _{i=1}^{N}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right)\mathbf {\hat {k}} =\mathbf {\hat {k}} \cdot \mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} =\mathbf {\hat {k}} ^{\mathrm {T} }\mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} ,$
where I_{R} is the moment of inertia matrix of the system relative to the reference point R, and [Δr_{i}] is the skew symmetric matrix obtained from the vector Δr_{i} = r_{i} − R.
This is derived as follows. Let a rigid assembly of N particles, P_{i}, i = 1, …, N, have coordinates r_{i}. Choose R as a reference point and compute the moment of inertia around a line L defined by the unit vector k̂ through the reference point R, L(t) = R + tk̂. The perpendicular vector from this line to the particle P_{i} is obtained from Δr_{i} by removing the component that projects onto k̂.
 $\Delta \mathbf {r} _{i}^{\perp }=\Delta \mathbf {r} _{i}\left(\mathbf {\hat {k}} \cdot \Delta \mathbf {r} _{i}\right)\mathbf {\hat {k}} =\left(\mathbf {E} \mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathrm {T} }\right)\Delta \mathbf {r} _{i},$
where E is the identity matrix, so as to avoid confusion with the inertia matrix, and k̂ k̂^{T} is the outer product matrix formed from the unit vector k̂ along the line L.
To relate this scalar moment of inertia to the inertia matrix of the body, introduce the skewsymmetric matrix [k̂] such that [k̂]y = k̂ × y, then we have the identity
 $\left[\mathbf {\hat {k}} \right]^{2}\equiv \left\mathbf {\hat {k}} \right^{2}\left(\mathbf {E} \mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathrm {T} }\right)=\mathbf {E} \mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathrm {T} },$
noting that k̂ is a unit vector.
The magnitude squared of the perpendicular vector is
 ${\begin{aligned}\left\Delta \mathbf {r} _{i}^{\perp }\right^{2}&=\left(\left[\mathbf {\hat {k}} \right]^{2}\Delta \mathbf {r} _{i}\right)\cdot \left(\left[\mathbf {\hat {k}} \right]^{2}\Delta \mathbf {r} _{i}\right)\\&=\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\end{aligned}}$
The simplification of this equation uses the triple scalar product identity
 $\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\equiv \left(\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\times \mathbf {\hat {k}} \right)\cdot \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right),$
where the dot and the cross products have been interchanged. Exchanging products, and simplifying by noting that Δr_{i} and k̂ are orthogonal:
 ${\begin{aligned}&\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\cdot \left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\\={}&\left(\left(\mathbf {\hat {k}} \times \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\right)\times \mathbf {\hat {k}} \right)\cdot \left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\\={}&\left(\mathbf {\hat {k}} \times \Delta \mathbf {r} _{i}\right)\cdot \left(\Delta \mathbf {r} _{i}\times \mathbf {\hat {k}} \right)\\={}&\mathbf {\hat {k}} \cdot \left(\Delta \mathbf {r} _{i}\times \Delta \mathbf {r} _{i}\times \mathbf {\hat {k}} \right)\\={}&\mathbf {\hat {k}} \cdot \left[\Delta \mathbf {r} _{i}\right]^{2}\mathbf {\hat {k}} .\end{aligned}}$
Thus, the moment of inertia around the line L through R in the direction k̂ is obtained from the calculation
 ${\begin{aligned}I_{L}&=\sum _{i=1}^{N}m_{i}\left\Delta \mathbf {r} _{i}^{\perp }\right^{2}\\&=\left(\sum _{i=1}^{N}m_{i}\mathbf {\hat {k}} \cdot \left[\Delta \mathbf {r} _{i}\right]^{2}\mathbf {\hat {k}} \right)=\mathbf {\hat {k}} \cdot \left(\sum _{i=1}^{N}m_{i}\left[\Delta \mathbf {r} _{i}\right]^{2}\right)\mathbf {\hat {k}} \\&=\mathbf {\hat {k}} \cdot \mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} =\mathbf {\hat {k}} ^{\mathrm {T} }\mathbf {I} _{\mathbf {R} }\mathbf {\hat {k}} ,\end{aligned}}$
where I_{R} is the moment of inertia matrix of the system relative to the reference point R.
This shows that the inertia matrix can be used to calculate the moment of inertia of a body around any specified rotation axis in the body.
Inertia tensor[edit]
The inertia matrix is often described as the inertia tensor, which consists of the same moments of inertia and products of inertia about the three coordinate axes.^{[6]}^{[23]} The inertia tensor is constructed from the nine component tensors, (the symbol $\otimes$ is the tensor product)
 $\mathbf {e} _{i}\otimes \mathbf {e} _{j},\quad i,j=1,2,3,$
where e_{i}, i = 1, 2, 3 are the three orthogonal unit vectors defining the inertial frame in which the body moves. Using this basis the inertia tensor is given by
 $\mathbf {I} =\sum _{i=1}^{3}\sum _{j=1}^{3}I_{ij}\mathbf {e} _{i}\otimes \mathbf {e} _{j}.$
This tensor is of degree two because the component tensors are each constructed from two basis vectors. In this form the inertia tensor is also called the inertia binor.
For a rigid system of particles P_{k}, k = 1, …, N each of mass m_{k} with position coordinates r_{k} = (x_{k}, y_{k}, z_{k}), the inertia tensor is given by
 $\mathbf {I} =\sum _{k=1}^{N}m_{k}\left(\left(\mathbf {r} _{k}\cdot \mathbf {r} _{k}\right)\mathbf {E} \mathbf {r} _{k}\otimes \mathbf {r} _{k}\right),$
where E is the identity tensor
 $\mathbf {E} =\mathbf {e} _{1}\otimes \mathbf {e} _{1}+\mathbf {e} _{2}\otimes \mathbf {e} _{2}+\mathbf {e} _{3}\otimes \mathbf {e} _{3}.$
In this case, the components of the inertia tensor are given by
 ${\begin{aligned}I_{11}=I_{xx}&=\sum _{k=1}^{N}m_{k}\left(y_{k}^{2}+z_{k}^{2}\right),\\I_{22}=I_{yy}&=\sum _{k=1}^{N}m_{k}\left(x_{k}^{2}+z_{k}^{2}\right),\\I_{33}=I_{zz}&=\sum _{k=1}^{N}m_{k}\left(x_{k}^{2}+y_{k}^{2}\right),\\I_{12}=I_{21}=I_{xy}&=\sum _{k=1}^{N}m_{k}x_{k}y_{k},\\I_{13}=I_{31}=I_{xz}&=\sum _{k=1}^{N}m_{k}x_{k}z_{k},\\I_{23}=I_{32}=I_{yz}&=\sum _{k=1}^{N}m_{k}y_{k}z_{k}.\end{aligned}}$
The inertia tensor for a continuous body is given by
 $\mathbf {I} =\iiint \limits _{Q}\rho (\mathbf {r} )\left(\left(\mathbf {r} \cdot \mathbf {r} \right)\mathbf {E} \mathbf {r} \otimes \mathbf {r} \right)\,\mathrm {d} V,$
where r defines the coordinates of a point in the body and ρ(r) is the mass density at that point. The integral is taken over the volume V of the body. The inertia tensor is symmetric because I_{ij} = I_{ji}.
Alternatively it can also be written in terms of the hat operator^{[clarification needed]} as:
 $\mathbf {I} =\iiint \limits _{Q}\rho (\mathbf {r} )({\hat {r}})^{2}\,\mathrm {d} V,$
The inertia tensor can be used in the same way as the inertia matrix to compute the scalar moment of inertia about an arbitrary axis in the direction n,
 $I_{n}=\mathbf {n} \cdot \mathbf {I} \cdot \mathbf {n} ,$
where the dot product is taken with the corresponding elements in the component tensors. A product of inertia term such as I_{12} is obtained by the computation
 $I_{12}=\mathbf {e} _{1}\cdot \mathbf {I} \cdot \mathbf {e} _{2},$
and can be interpreted as the moment of inertia around the xaxis when the object rotates around the yaxis.
The components of tensors of degree two can be assembled into a matrix. For the inertia tensor this matrix is given by,
 $\mathbf {I} ={\begin{bmatrix}I_{11}&I_{12}&I_{13}\\I_{21}&I_{22}&I_{23}\\I_{31}&I_{32}&I_{33}\end{bmatrix}}={\begin{bmatrix}I_{xx}&I_{xy}&I_{xz}\\I_{yx}&I_{yy}&I_{yz}\\I_{zx}&I_{zy}&I_{zz}\end{bmatrix}}.$
It is common in rigid body mechanics to use notation that explicitly identifies the x, y, and z axes, such as I_{xx} and I_{xy}, for the components of the inertia tensor.
Identities for a skewsymmetric matrix[edit]
To compute moment of inertia of a mass around an axis, the perpendicular vector from the mass to the axis is needed. If the axis L is defined by the unit vector k̂ through the reference point R, then the perpendicular vector from the line L to the point r is given by
 $\Delta \mathbf {r} _{i}^{\perp }=\Delta \mathbf {r} _{i}\left(\mathbf {\hat {k}} \cdot \Delta \mathbf {r} _{i}\right)\mathbf {\hat {k}} =\left(\mathbf {E} \mathbf {\hat {k}} \mathbf {\hat {k}} ^{\mathrm {T} }\right)\Delta \mathbf {r} _{i},$
where E is the identity matrix, so as to avoid confusion with the inertia matrix, and k̂ k̂^{T} is the outer product matrix formed from the unit vector k̂ along the line L. Recall that skewsymmetric matrix [k̂] is constructed so that [k̂]y = k̂ × y. The matrix E − k̂ k̂^{T} in this equation subtracts the component of Δr_{i} = r − R that is parallel to k̂.
The previous sections show that in computing the moment of inertia matrix this operator yields a similar operator using the components of the vector Δr_{i} that is
 $\left[\mathbf {E} \left\Delta \mathbf {r} \right^{2}\Delta \mathbf {r} \Delta \mathbf {r} ^{\mathrm {T} }\right].$
It is helpful to keep the following identities in mind to compare the equations that define the inertia tensor and the inertia matrix.
Let [R] be the skew symmetric matrix associated with the position vector R = (x, y, z), then the product in the inertia matrix becomes
 $[\mathbf {R} ]^{2}={\begin{bmatrix}0&z&y\\z&0&x\\y&x&0\end{bmatrix}}^{2}={\begin{bmatrix}y^{2}+z^{2}&xy&xz\\yx&x^{2}+z^{2}&yz\\zx&zy&x^{2}+y^{2}\end{bmatrix}}.$
This can be viewed as another way of computing the perpendicular distance from an axis to a point, because the matrix formed by the outer product [R R^{T}] yields the identify
 ${\begin{aligned}&[\mathbf {R} ]^{2}=\left\mathbf {R} \right^{2}\mathbf {E} \mathbf {R} \mathbf {R} ^{\mathrm {T} }=\\&{\begin{bmatrix}x^{2}+y^{2}+z^{2}&0&0\\0&x^{2}+y^{2}+z^{2}&0\\0&0&x^{2}+y^{2}+z^{2}\end{bmatrix}}{\begin{bmatrix}x^{2}&xy&xz\\yx&y^{2}&yz\\zx&zy&z^{2}\end{bmatrix}},\end{aligned}}$
where E is the 3×3 identity matrix.
Also notice, that
 $\left\mathbf {R} \right^{2}=\mathbf {R} \cdot \mathbf {R} =\operatorname {tr} \left(\mathbf {R} \mathbf {R} ^{\mathrm {T} }\right),$
where tr denotes the sum of the diagonal elements of the outer product matrix, known as its trace.
Inertia matrix in different reference frames[edit]
The use of the inertia matrix in Newton's second law assumes its components are computed relative to axes parallel to the inertial frame and not relative to a bodyfixed reference frame.^{[6]}^{[23]} This means that as the body moves the components of the inertia matrix change with time. In contrast, the components of the inertia matrix measured in a bodyfixed frame are constant.
Body frame[edit]
Let the body frame inertia matrix relative to the centre of mass be denoted IB
C, and define the orientation of the body frame relative to the inertial frame by the rotation matrix A, such that,
 $\mathbf {x} =\mathbf {A} \mathbf {y} ,$
where vectors y in the body fixed coordinate frame have coordinates x in the inertial frame. Then, the inertia matrix of the body measured in the inertial frame is given by
 $\mathbf {I} _{\mathbf {C} }=\mathbf {A} \mathbf {I} _{\mathbf {C} }^{B}\mathbf {A} ^{\mathrm {T} }.$
Notice that A changes as the body moves, while IB
C remains constant.
Principal axes[edit]
Measured in the body frame the inertia matrix is a constant real symmetric matrix. A real symmetric matrix has the eigendecomposition into the product of a rotation matrix Q and a diagonal matrix Λ, given by
 $\mathbf {I} _{\mathbf {C} }^{B}=\mathbf {Q} {\boldsymbol {\Lambda }}\mathbf {Q} ^{\mathrm {T} },$
where
 ${\boldsymbol {\Lambda }}={\begin{bmatrix}I_{1}&0&0\\0&I_{2}&0\\0&0&I_{3}\end{bmatrix}}.$
The columns of the rotation matrix Q define the directions of the principal axes of the body, and the constants I_{1}, I_{2}, and I_{3} are called the principal moments of inertia. This result was first shown by J. J. Sylvester (1852), and is a form of Sylvester's law of inertia.^{[26]}^{[27]}
For bodies with constant density an axis of rotational symmetry is a principal axis.
Inertia of an ellipsoid[edit]
An ellipsoid with the semiprincipal diameters labelled a, b, and c.
The moment of inertia matrix in bodyframe coordinates is a quadratic form that defines a surface in the body called Poinsot's ellipsoid.^{[28]} Let Λ be the inertia matrix relative to the centre of mass aligned with the principal axes, then the surface
 $\mathbf {x} ^{\mathrm {T} }{\boldsymbol {\Lambda }}\mathbf {x} =1,$
or
 $I_{1}x^{2}+I_{2}y^{2}+I_{3}z^{2}=1,$
defines an ellipsoid in the body frame. Write this equation in the form,
 $\left({\frac {x}{1/{\sqrt {I_{1}}}}}\right)^{2}+\left({\frac {y}{1/{\sqrt {I_{2}}}}}\right)^{2}+\left({\frac {z}{1/{\sqrt {I_{3}}}}}\right)^{2}=1,$
to see that the semiprincipal diameters of this ellipsoid are given by
 $a={\frac {1}{\sqrt {I_{1}}}},\quad b={\frac {1}{\sqrt {I_{2}}}},\quad c={\frac {1}{\sqrt {I_{3}}}}.$
Let a point x on this ellipsoid be defined in terms of its magnitude and direction, x = xn, where n is a unit vector. Then the relationship presented above, between the inertia matrix and the scalar moment of inertia I_{n} around an axis in the direction n, yields
 $\mathbf {x} ^{\mathrm {T} }{\boldsymbol {\Lambda }}\mathbf {x} =\mathbf {x} ^{2}\mathbf {n} ^{\mathrm {T} }{\boldsymbol {\Lambda }}\mathbf {n} =\mathbf {x} ^{2}I_{n}=1.$
Thus, the magnitude of a point x in the direction n on the inertia ellipsoid is
 $\mathbf {x} ={\frac {1}{\sqrt {I_{n}}}}.$
See also[edit]
References[edit]
 ^ ^{a} ^{b} Mach, Ernst (1919). The Science of Mechanics. pp. 173–187. Retrieved November 21, 2014.
 ^ Euler, Leonhard (1765). Theoria motus corporum solidorum seu rigidorum: Ex primis nostrae cognitionis principiis stabilita et ad omnes motus, qui in huiusmodi corpora cadere possunt, accommodata [The theory of motion of solid or rigid bodies: established from first principles of our knowledge and appropriate for all motions which can occur in such bodies] (in Latin). Rostock and Greifswald (Germany): A. F. Röse. p. 166. ISBN 9781429742818. From page 166: "Definitio 7. 422. Momentum inertiae corporis respectu eujuspiam axis est summa omnium productorum, quae oriuntur, si singula corporis elementa per quadrata distantiarum suarum ab axe multiplicentur." (Definition 7. 422. A body's moment of inertia with respect to any axis is the sum of all of the products, which arise, if the individual elements of the body are multiplied by the square of their distances from the axis.)
 ^ ^{a} ^{b} ^{c} ^{d} ^{e} ^{f} Marion, JB; Thornton, ST (1995). Classical dynamics of particles & systems (4th ed.). Thomson. ISBN 0030973023.
 ^ ^{a} ^{b} Symon, KR (1971). Mechanics (3rd ed.). AddisonWesley. ISBN 0201073927.
 ^ ^{a} ^{b} Tenenbaum, RA (2004). Fundamentals of Applied Dynamics. Springer. ISBN 038700887X.
 ^ ^{a} ^{b} ^{c} ^{d} ^{e} ^{f} ^{g} ^{h} ^{i} Kane, T. R.; Levinson, D. A. (1985). Dynamics, Theory and Applications. New York: McGrawHill.
 ^ ^{a} ^{b} Winn, Will (2010). Introduction to Understandable Physics: Volume I  Mechanics. AuthorHouse. p. 10.10. ISBN 1449063330.
 ^ ^{a} ^{b} Fullerton, Dan (2011). Honors Physics Essentials. Silly Beagle Productions. pp. 142–143. ISBN 0983563330.
 ^ Wolfram, Stephen (2014). "Spinning Ice Skater". Wolfram Demonstrations Project. Mathematica, Inc. Retrieved September 30, 2014.
 ^ Hokin, Samuel (2014). "Figure Skating Spins". The Physics of Everyday Stuff. Retrieved September 30, 2014.
 ^ Breithaupt, Jim (2000). New Understanding Physics for Advanced Level. Nelson Thomas. p. 64. ISBN 0748743146.
 ^ Crowell, Benjamin (2003). Conservation Laws. Light and Matter. p. 107. ISBN 0970467028.
 ^ Tipler, Paul A. (1999). Physics for Scientists and Engineers, Vol. 1: Mechanics, Oscillations and Waves, Thermodynamics. Macmillan. p. 304. ISBN 1572594918.
 ^ ^{a} ^{b} ^{c} ^{d} ^{e} Paul, Burton (June 1979). Kinematics and Dynamics of Planar Machinery. Prentice Hall. ISBN 9780135160626.
 ^ Halliday, David; Resnick, Robert; Walker, Jearl (2005). Fundamentals of physics (7th ed.). Hoboken, NJ: Wiley. ISBN 9780471216438.
 ^ French, A.P. (1971). Vibrations and waves. Boca Raton, FL: CRC Press. ISBN 9780748744473.
 ^ ^{a} ^{b} ^{c} ^{d} ^{e} ^{f} Uicker, John J.; Pennock, Gordon R.; Shigley, Joseph E. (2010). Theory of Machines and Mechanisms (4th ed.). Oxford University Press. ISBN 9780195371239.
 ^ ^{a} ^{b} ^{c} ^{d} ^{e} ^{f} ^{g} ^{h} ^{i} ^{j} Ferdinand P. Beer; E. Russell Johnston; Jr., Phillip J. Cornwell (2010). Vector mechanics for engineers: Dynamics (9th ed.). Boston: McGrawHill. ISBN 9780077295493.
 ^ H. Williams, Measuring the inertia tensor, presented at the IMA Mathematics 2007 Conference.
 ^ Gracey, William, The experimental determination of the moments of inertia of airplanes by a simplified compoundpendulum method, NACA Technical Note No. 1629, 1948
 ^ In that situation this moment of inertia only describes how a torque applied along that axis causes a rotation about that axis. But, torques not aligned along a principal axis will also cause rotations about other axes.
 ^ Walter D. Pilkey, Analysis and Design of Elastic Beams: Computational Methods, John Wiley, 2002.
 ^ ^{a} ^{b} ^{c} Goldstein, H. (1980). Classical Mechanics (2nd ed.). AddisonWesley. ISBN 0201029189.
 ^ L. D. Landau and E. M. Lifshitz, Mechanics, Vol 1. 2nd Ed., Pergamon Press, 1969.
 ^ L. W. Tsai, Robot Analysis: The mechanics of serial and parallel manipulators, JohnWiley, NY, 1999.
 ^ Sylvester, J J (1852). "A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares" (PDF). Philosophical Magazine (Ser. 4). 4 (23): 138–142. doi:10.1080/14786445208647087. Retrieved June 27, 2008.
 ^ Norman, C.W. (1986). Undergraduate algebra. Oxford University Press. pp. 360–361. ISBN 0198532482.
 ^ Mason, Matthew T. (2001). Mechanics of Robotics Manipulation. MIT Press. ISBN 9780262133968. Retrieved November 21, 2014.
External links[edit]

Linear/translational quantities 

Angular/rotational quantities 
Dimensions 
1 
L 
L^{2} 
Dimensions 
1 
1 
1 
T 
time: t
s 
absement: A
m s 

T 
time: t
s 


1 

distance: d, position: r, s, x, displacement
m 
area: A
m^{2} 
1 

angle: θ, angular displacement: θ
rad 
solid angle: Ω
rad^{2}, sr 
T^{−1} 
frequency: f
s^{−1}, Hz 
speed: v, velocity: v
m s^{−1} 
kinematic viscosity: ν,
specific angular momentum: h
m^{2} s^{−1} 
T^{−1} 
frequency: f
s^{−1}, Hz 
angular speed: ω, angular velocity: ω
rad s^{−1} 

T^{−2} 

acceleration: a
m s^{−2} 

T^{−2} 

angular acceleration: α
rad s^{−2} 

T^{−3} 

jerk: j
m s^{−3} 

T^{−3} 

angular jerk: ζ
rad s^{−3} 



M 
mass: m
kg 


ML^{2} 
moment of inertia: I
kg m^{2} 


MT^{−1} 

momentum: p, impulse: J
kg m s^{−1}, N s 
action: 𝒮, actergy: ℵ
kg m^{2} s^{−1}, J s 
ML^{2}T^{−1} 

angular momentum: L, angular impulse: ΔL
kg m^{2} s^{−1} 
action: 𝒮, actergy: ℵ
kg m^{2} s^{−1}, J s 
MT^{−2} 

force: F, weight: F_{g}
kg m s^{−2}, N 
energy: E, work: W
kg m^{2} s^{−2}, J 
ML^{2}T^{−2} 

torque: τ, moment: M
kg m^{2} s^{−2}, N m 
energy: E, work: W
kg m^{2} s^{−2}, J 
MT^{−3} 

yank: Y
kg m s^{−3}, N s^{−1} 
power: P
kg m^{2} s^{−3}, W 
ML^{2}T^{−3} 

rotatum: P
kg m^{2} s^{−3}, N m s^{−1} 
power: P
kg m^{2} s^{−3}, W 
