Share
VIDEOS 1 TO 50
トロオドン類  Troodontidae:「大恐竜展」ゴビ砂漠の驚異
トロオドン類 Troodontidae:「大恐竜展」ゴビ砂漠の驚異
Published: 2014/08/26
Channel: toprating2
Mei | Enciclopedia sobre Dinosaurios
Mei | Enciclopedia sobre Dinosaurios
Published: 2016/12/16
Channel: Dinosaurioss Dinosaurioss
Tribute to Troodontids
Tribute to Troodontids
Published: 2007/06/03
Channel: Tyrannotitan
Dino Byte 001 - Troodon
Dino Byte 001 - Troodon
Published: 2015/04/21
Channel: Fossil Junkie
New Species of Troodontid
New Species of Troodontid
Published: 2017/08/06
Channel: Animals: The Definitive Guide
Borogovia dinosaur
Borogovia dinosaur
Published: 2016/11/15
Channel: flyinfrogg
Xiaotingia - Video Learning - WizScience.com
Xiaotingia - Video Learning - WizScience.com
Published: 2015/09/04
Channel: Wiz Science™
Borogovia - Video Learning - WizScience.com
Borogovia - Video Learning - WizScience.com
Published: 2015/09/08
Channel: Wiz Science™
Prehistoric News : New Troodontid from Mongolia
Prehistoric News : New Troodontid from Mongolia
Published: 2014/02/08
Channel: ThePrehistoricMaster
SCP-317: [Kreidezeitliche Physikerin] (German/Deutsch)
SCP-317: [Kreidezeitliche Physikerin] (German/Deutsch)
Published: 2017/08/05
Channel: Ingressive
Xixiasaurus: Dinosaur of the Day
Xixiasaurus: Dinosaur of the Day
Published: 2016/07/12
Channel: I Know Dino
Byronosaurus - Video Learning - WizScience.com
Byronosaurus - Video Learning - WizScience.com
Published: 2015/09/08
Channel: Wiz Science™
Byronosaurus: Dinosaur of the Day
Byronosaurus: Dinosaur of the Day
Published: 2016/08/17
Channel: I Know Dino
Xixiasaurus: I Know Dino Podcast Episode 84
Xixiasaurus: I Know Dino Podcast Episode 84
Published: 2016/07/12
Channel: I Know Dino
Troodon: Dinosaur of the Day
Troodon: Dinosaur of the Day
Published: 2016/04/25
Channel: I Know Dino
Pachycephalosaurus: Dinosaur of the Day
Pachycephalosaurus: Dinosaur of the Day
Published: 2016/09/07
Channel: I Know Dino
Psittacosaurus vs Sinusonasus
Psittacosaurus vs Sinusonasus
Published: 2009/07/15
Channel: windowwalker008
Saurornitholestes - Video Learning - WizScience.com
Saurornitholestes - Video Learning - WizScience.com
Published: 2015/08/05
Channel: Wiz Science™
What does troodontid mean?
What does troodontid mean?
Published: 2015/08/31
Channel: What Does That Mean?
What are Birds?
What are Birds?
Published: 2015/09/27
Channel: PalaeoVerse
Timeline of pachycephalosaur research - Video Learning - WizScience.com
Timeline of pachycephalosaur research - Video Learning - WizScience.com
Published: 2015/08/06
Channel: Wiz Science™
How to Pronounce Troodontids
How to Pronounce Troodontids
Published: 2015/06/02
Channel: Pronunciation Guide
DINOSAURIER-KINDER WISSEN ÜBER DINOS 🐲PFLANZEN & FLEISCH FRESSER,LEARN DINOSAURS NAME & DINO SAUNDS
DINOSAURIER-KINDER WISSEN ÜBER DINOS 🐲PFLANZEN & FLEISCH FRESSER,LEARN DINOSAURS NAME & DINO SAUNDS
Published: 2017/04/15
Channel: videolus
オピストコエリカウディア Opisthocoelicaudia skarzynskii:「大恐竜展」ゴビ砂漠の驚異
オピストコエリカウディア Opisthocoelicaudia skarzynskii:「大恐竜展」ゴビ砂漠の驚異
Published: 2014/08/26
Channel: toprating2
イグアノドン類  Iguanodontia:「大恐竜展」ゴビ砂漠
イグアノドン類 Iguanodontia:「大恐竜展」ゴビ砂漠
Published: 2014/08/25
Channel: toprating2
【動く恐竜】ジュラシック・パーク  世界 恐竜  プレデターズ  子供のための. Výstava dinosaurů DinoPark
【動く恐竜】ジュラシック・パーク 世界 恐竜 プレデターズ 子供のための. Výstava dinosaurů DinoPark
Published: 2015/10/15
Channel: Zdeněk Souček
モンゴロケリス Mongolochelys efremovi:「大恐竜展」ゴビ砂漠の驚異
モンゴロケリス Mongolochelys efremovi:「大恐竜展」ゴビ砂漠の驚異
Published: 2014/08/25
Channel: toprating2
How to Pronounce Troodontid
How to Pronounce Troodontid
Published: 2015/06/02
Channel: Pronunciation Guide
サウロロフス  Saurolophus:「大恐竜展」ゴビ砂漠の驚異
サウロロフス Saurolophus:「大恐竜展」ゴビ砂漠の驚異
Published: 2014/08/26
Channel: toprating2
What Were the Biggest and Smallest Dinosaurs?
What Were the Biggest and Smallest Dinosaurs?
Published: 2012/12/03
Channel: American Museum of Natural History
HOW PRONOUNCE LEGOBOY1347! (BEST QUALITY VOICES)
HOW PRONOUNCE LEGOBOY1347! (BEST QUALITY VOICES)
Published: 2017/09/02
Channel: WordBox
OBM - Dinosaur - Gobivenator
OBM - Dinosaur - Gobivenator
Published: 2016/12/30
Channel: Our Best Moments
Pachycephalosaurus: I Know Dino Podcast Episode 93
Pachycephalosaurus: I Know Dino Podcast Episode 93
Published: 2016/09/07
Channel: I Know Dino
OBM - Dinosaur - Sinusonasus
OBM - Dinosaur - Sinusonasus
Published: 2016/12/30
Channel: Our Best Moments
Stability flapping in a wild Eurasian Sparrowhawk (Accipiter nisus)
Stability flapping in a wild Eurasian Sparrowhawk (Accipiter nisus)
Published: 2011/12/16
Channel: Stefano Di Criscio
大恐竜博4.wmv
大恐竜博4.wmv
Published: 2011/05/05
Channel: 井上隆靖
ネオコリストデラ類   Neochoristodera:「大恐竜展」ゴビ砂漠の驚異
ネオコリストデラ類 Neochoristodera:「大恐竜展」ゴビ砂漠の驚異
Published: 2014/08/26
Channel: toprating2
Troodon Turntable Feathered
Troodon Turntable Feathered
Published: 2010/06/17
Channel: ADigitalArtist
Pachycephalosaurus
Pachycephalosaurus
Published: 2015/12/14
Channel: Audiopedia
Byronosaurus: I Know Dino Podcast Episode 90
Byronosaurus: I Know Dino Podcast Episode 90
Published: 2016/08/17
Channel: I Know Dino
Prey positioning in a wild Eurasian Sparrowhawk (Accipiter nisus)
Prey positioning in a wild Eurasian Sparrowhawk (Accipiter nisus)
Published: 2011/12/16
Channel: Stefano Di Criscio
Jurassic World - Dino File No.45 Troodon 伤齿龙 トロオドン
Jurassic World - Dino File No.45 Troodon 伤齿龙 トロオドン
Published: 2017/03/08
Channel: GAME 游戏 ゲーム
オヴィラブドル類の巣  Oviraptoridae(Oviraptorids):「大恐竜展」ゴビ砂漠の驚異
オヴィラブドル類の巣 Oviraptoridae(Oviraptorids):「大恐竜展」ゴビ砂漠の驚異
Published: 2014/08/25
Channel: toprating2
Jurassic World - Birth of Troodon (Final Score No.1 10707Pt ) 20160118
Jurassic World - Birth of Troodon (Final Score No.1 10707Pt ) 20160118
Published: 2016/01/18
Channel: GAME 游戏 ゲーム
御船町の恐竜博物館のトロオドンの模型が動いた‼️‼️‼️
御船町の恐竜博物館のトロオドンの模型が動いた‼️‼️‼️
Published: 2017/07/30
Channel: イガワナオヤ
Troodon: I Know Dino Podcast Episode 36
Troodon: I Know Dino Podcast Episode 36
Published: 2016/04/25
Channel: I Know Dino
Thế giới các loài chim
Thế giới các loài chim
Published: 2016/01/08
Channel: Vẻ đẹp thiên nhiên
タルボサウルス  Tarbosaurus  ①:「大恐竜展」ゴビ砂漠の驚異
タルボサウルス Tarbosaurus ①:「大恐竜展」ゴビ砂漠の驚異
Published: 2014/08/26
Channel: toprating2
ハドロサウロイド類  Hadrosauroidea:「大恐竜展」ゴビ砂漠の驚異
ハドロサウロイド類 Hadrosauroidea:「大恐竜展」ゴビ砂漠の驚異
Published: 2014/08/26
Channel: toprating2
ピナコサウルス Pinacosaurus grangeri:「大恐竜展」ゴビ砂漠の驚異
ピナコサウルス Pinacosaurus grangeri:「大恐竜展」ゴビ砂漠の驚異
Published: 2014/08/26
Channel: toprating2
NEXT
GO TO RESULTS [51 .. 100]

WIKIPEDIA ARTICLE

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Troodontids
Temporal range:
Late JurassicLate Cretaceous, 150–66 Ma
Alaskan troodont.jpg
Mounted skeletal cast of an unnamed Alaskan troodontid, Perot Museum
Scientific classification e
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Order: Saurischia
Suborder: Theropoda
Clade: Eumaniraptora
Family: Troodontidae
Gilmore, 1924
Type species
Troodon formosus
Leidy, 1856
Subgroups
Synonyms

Saurornithoididae Barsbold, 1974

Troodontidae is a family of bird-like theropod dinosaurs. During most of the 20th century, troodontid fossils were few and scrappy and they have therefore been allied, at various times, with many dinosaurian lineages. More recent fossil discoveries of complete and articulated specimens (including specimens which preserve feathers, eggs and embryos, and complete juveniles), have helped to increase understanding about this group. Anatomical studies, particularly studies of the most primitive troodontids, like Sinovenator, demonstrate striking anatomical similarities with Archaeopteryx and primitive dromaeosaurids, and demonstrate that they are relatives comprising a clade called Paraves.

Physical characteristics[edit]

Troodontids are a group of small, bird-like, gracile maniraptorans. All troodontids have unique features of the skull, such as large numbers of closely spaced teeth in the lower jaw. Troodontids have sickle-claws and raptorial hands, and some of the highest non-avian encephalization quotients, suggesting that they were behaviourally advanced and had keen senses.[1] The largest troodontid was Troodon, and the smallest was Anchiornis. They had unusually long legs compared to other theropods, with a large, curved claw on their retractable second toes, similar to the "sickle-claw" of the dromaeosaurids. However, the sickle-claws of troodontids were not as large or recurved as in their relatives, and in some instances could not be held off the ground and "retracted" to the same degree. In at least one troodontid, Borogovia, the second toe could not be held far off the ground at all and the claw was straight, not curved or sickle-like.

Skull of the troodontid Saurornithoides mongoliensis.

Troodontids had unusually large brains among dinosaurs, comparable to those of living flightless birds. Their eyes were also large, and pointed forward, indicating that they had good binocular vision. The ears of troodontids were also unusual among theropods, having enlarged middle ear cavities, indicating acute hearing ability. The placement of this cavity near the eardrum may have aided in the detection of low-frequency sounds.[2] In some troodontids, ears were also asymmetrical, with one ear placed higher on the skull than the other, a feature shared only with some owls. The specialization of the ears may indicate that troodontids hunted in a manner similar to owls, using their hearing to locate small prey.[3]

Skeleton of an unnamed troodontid

Although most paleontologists believe that they were predatory carnivores, the many small, coarsely serrated teeth, large denticle size, and U-shaped jaws of some species (particularly Troodon) suggest that some species may have been omnivorous or herbivorous. Some suggest that the large denticle size is reminiscent of the teeth of extant iguanine lizards.[4][5] In contrast, a few species, such as Byronosaurus, had large numbers of needle-like teeth, which seem best-suited for picking up small prey, such as birds, lizards and small mammals. Other morphological characteristics of the teeth, such as the detailed form of the denticles and the presence of blood grooves, also seem to indicate carnivory.[6] Though little is known directly about the predatory behavior of troodontids, Fowler and colleagues theorize that the longer legs and smaller sickle claws (as compared to dromaeosaurids) indicates a more cursorial lifestyle, though the study indicates that troodontids were still likely to have used the unguals for prey manipulation. The proportions of the metatarsals, tarsals and unguals of troodontids appear indicative of their having nimbler, but weaker feet, perhaps better adapted for capturing and subduing smaller prey. This suggests an ecological separation from the slower but more powerful Dromaeosauridae.[7]

Paleobiology[edit]

Many troodontid nests, including eggs that contain fossilized embryos, have been described. Hypotheses about troodontid reproduction have been developed from this evidence (see Troodon).

A few troodont fossils, including specimens of Mei and Sinornithoides, demonstrate that these animals roosted like birds, with their heads tucked under their forelimbs.[8] These fossils, as well as numerous skeletal similarities to birds and related feathered dinosaurs, support the idea that troodontids probably bore a bird-like feathered coat. The discovery of fully feathered, primitive troodontids, such as Jianianhualong, lend support to this.

In 2004, Mark Norell and colleagues described two partial troodontid skulls (specimen numbers IGM 100/972 and IGM 100/974) found in a nest of oviraptorid eggs in the Djadokhta Formation of Mongolia. The nest is quite certainly that of an oviraptorosaur, since an oviraptorid embryo is still preserved inside one of the eggs. The two partial troodontid skulls were first described by Norell et al. (1994) as dromaeosaurids, but reassigned to the troodontid Byronosaurus after further study.[4][9] The troodontids were either hatchlings or embryos, and fragments of eggshell are adhered to them although it seems to be oviraptorid eggshell. The presence of tiny troodontids in an oviraptorid nest is an enigma. Hypotheses explaining how they came to be there include that they were the prey of the adult oviraptorid, that they were there to prey on oviraptorid hatchlings, or that some troodontids may have been nest parasites.[10]

Troodontids and bird evolution[edit]

Troodontids are important in research into the origin of birds because they share many anatomical characters with early birds. Crucially, the substantially complete fossil identified as WDC DML 001 ("Lori") is a possible troodontid from the Late Jurassic Morrison Formation, close to the time of Archaeopteryx. The discovery of Jurassic troodonts is positive physical evidence that derived deinonychosaurs were present before the time that avians arose. This fact strongly invalidates the "temporal paradox" cited by the few remaining opponents of the idea that birds are closely related to dinosaurs.[11]

Classification[edit]

Troodontid fossils were among the first dinosaur remains described. Initially, Leidy (1856) assumed they were lacertilian (lizards), but, by 1924, they were referred to Dinosauria by Gilmore, who suggested that they were ornithischians and allied them with the pachycephalosaurian Stegoceras in a Troodontidae. It was not until 1945 that C.M. Sternberg recognized Troodontidae as a theropod family. Since 1969, Troodontidae has typically been allied with Dromaeosauridae, in a clade (natural group) known as Deinonychosauria, but this was by no means a consensus. Holtz (in 1994) erected the clade Bullatosauria, uniting Ornithomimosauria (the "ostrich-dinosaurs") and Troodontidae, on the basis of characteristics including, among others, an inflated braincase (parabasisphenoid) and a long, low opening in the upper jaw (the maxillary fenestra). Features of the pelvis also suggested they were less advanced than dromaeosaurids. New discoveries of primitive troodontids from China (such as Sinovenator and Mei), however, display strong similarities between Troodontidae, Dromaeosauridae and the primitive bird Archaeopteryx, and most paleontologists, including Holtz, now consider troodontids to be much more closely related to birds than they are to ornithomimosaurs, causing the clade Bullatosauria to be abandoned.

One study of theropod systematics by members of the Theropod Working Group has uncovered striking similarities among the most basal dromaeosaurids, troodontids, and Archaeopteryx. This clade is together called Paraves by Novas and Pol.[12] The cladogram published in Hwang et al. found that Archaeopteryx represents a more basal branch of Paraves, and places dromaeosaurids and troodontids as more derived. This raises the possibility that aerodynamic behaviors could be ancestral to all of Deinonychosauria.[13] The extensive cladistic analysis conducted by Turner et al. (2012) supported the monophyly of Troodontidae.[14]

Relationships[edit]

There are multiple possibilities of the genera included in Troodontidae as well as how they are related. Very primitive species, such as Anchiornis huxleyi, have alternately been found to be early troodontids, early members of the closely related group Avialae, or more primitive paravians by various studies. The cladogram below follows the results of a study by Lefèvreet al., 2017.[15]

Eumaniraptora

Avialae


Deinonychosauria

Dromaeosauridae


Troodontidae


Jinfengopteryx



Mei





Sinovenator




Sinusonasus




Sinornithoides





Byronosaurus



Gobivenator






Troodon



Borogovia




Saurornithoides



Zanabazar










Shen et al. (2017a) explored troodontid phylogeny using a modified version of the Tsuihiji et al. (2014) analysis.[16] It was in turn based on data published by Gao et al. (2012), a slightly modified version of the Xu et al. (2011) analysis[17], focusing on advanced troodontids. A simplified version is shown below.[18]

Deinonychosauria 

Dromaeosauridae


 Troodontidae 

Sinovenator






Eosinopteryx



Liaoningvenator





Anchiornis



Xiaotingia






Talos




Mei




Byronosaurus




IGM 100/140



SPS 100/44



Sinornithoides




Gobivenator




Linhevenator



Philovenator





Troodon




Saurornithoides



Zanabazar












In 2014, Brusatte, Lloyd, Wang and Norell published an analysis on Coelurosauria, based on data from Turner et al. (2012) who named a third subfamily of troodontids, Jinfengopteryginae.[14] Their analysis included more basal troodontid species but failed to resolve many of their interrelationships, resulting in large "polytomies" (sets of species where the branching order in the family tree is uncertain).[19] An updated version of the Brusatte et al. analysis was provided by Shen et at. (2017b), who included more taxa and recovered greater resolution. Shen et at. named a fourth subfamily of troodontids, the Sinovenatorinae. A simplified version of their analysis is shown below.[20]

Deinonychosauria 

Dromaeosauridae


 Troodontidae 


Eosinopteryx



Anchiornis




Aurornis



Xiaotingia






IGM 100/44



Byronosaurus



Xixiasaurus


 Jinfengopteryginae 

IGM 100/1323




IGM 100/1128



Jinfengopteryx




 Sinovenatorinae 

Mei




Sinovenator




Daliansaurus



Sinusonasus







Sinornithoides




Troodon




Zanabazar



Saurornithoides








See also[edit]

References[edit]

  1. ^ Junchang Lü; Li Xu; Yongqing Liu; Xingliao Zhang; Songhai Jia & Qiang Ji (2010). "A new troodontid (Theropoda: Troodontidae) from the Late Cretaceous of central China, and the radiation of Asian troodontids" (PDF). Acta Palaeontologica Polonica. 55 (3): 381–388. doi:10.4202/app.2009.0047. 
  2. ^ Currie, P. J. (1985). "Cranial anatomy of Stenonychosaurus inequalis (Saurischia, Theropoda) and its bearing on the origin of birds". Canadian Journal of Earth Sciences. 22: 1643–1658. doi:10.1139/e85-173. 
  3. ^ Castanhinha, R.; Mateus, O. (2006). "On the left-right asymmetry in dinosaurs". Journal of Vertebrate Paleontology. 26 (Supp. 3): 48A. doi:10.1080/02724634.2006.10010069. 
  4. ^ a b Mackovicky, Peter J.; Norell, Mark A. (2004). "Troodontidae". In Weishampel, David B.; Dodson, Peter; Osmólska, Halszka. The Dinosauria (2nd ed.). Berkeley: University of California Press. pp. 184–195. ISBN 0-520-24209-2. 
  5. ^ Holtz, T.R. Jr.; Brinkman, D.L.; Chandler, C.L. (1998). "Denticle morphometrics and a possibly omnivorous feeding habit for the theropod dinosaur Troodon" (PDF). Gaia. 15: 159–166. 
  6. ^ Currie, PJ; Dong, Z (2001). "New information on Cretaceous troodontids (Dinosauria, Theropoda) from the People's Republic of China". Canadian Journal of Earth Sciences. 38: 1753–1766. doi:10.1139/e01-065. 
  7. ^ Fowler, D.W.; Freedman, E.A.; Scannella, J.B.; Kambic, R.E. (2011). "The Predatory Ecology of Deinonychus and the Origin of Flapping in Birds". PLoS ONE. 6 (12): e28964. doi:10.1371/journal.pone.0028964. PMC 3237572Freely accessible. PMID 22194962. 
  8. ^ Xu; Norell (2004). "A new troodontid dinosaur from China with avian-like sleeping posture". Nature. 431 (7010): 838–841. doi:10.1038/nature02898. PMID 15483610. 
  9. ^ Bever, G.S.; Norell, M.A. (2009). "The perinate skull of Byronosaurus (Troodontidae) with observations on the cranial ontogeny of paravian theropods". American Museum Novitates. 3657: 51. 
  10. ^ Norell, Mark A.; Clark, James M.; Dashzeveg, Demberelyin; Barsbold, Rhinchen; Chiappe, Luis M.; Davidson, Amy R.; McKenna, Malcolm C.; Perle, Altangerel; Novacek, Michael J. (November 4, 1994). "A theropod dinosaur embryo and the affinities of the Flaming Cliffs dinosaur eggs". Science. 266 (5186): 779–782. doi:10.1126/science.266.5186.779. PMID 17730398. 
  11. ^ Hu, D.; Hou, L.; Zhang, L.; Xu, X. (2009). "A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus". Nature. 461: 640–643. doi:10.1038/nature08322. PMID 19794491. 
  12. ^ Novas, F. E.; Pol, D. (2005). "New evidence on deinonychosaurian dinosaurs from the Late Cretaceous of Patagonia". Nature. 433 (7028): 858–861. doi:10.1038/nature03285. PMID 15729340. 
  13. ^ Hwang, S.H.; Norell, M.A.; Ji, Q.; Gao, K.-Q. (2002). "New specimens of Microraptor zhaoianus (Theropoda: Dromaeosauridae) from Northeastern China". American Museum Novitates. 3381: 1–44. doi:10.1206/0003-0082(2002)381<0001:nsomzt>2.0.co;2. 
  14. ^ a b Turner, A. H.; Makovicky, P. J.; Norell, M. A. (2012). "A Review of Dromaeosaurid Systematics and Paravian Phylogeny". Bulletin of the American Museum of Natural History. 371: 1. doi:10.1206/748.1. 
  15. ^ Ulysse Lefèvre, Andrea Cau, Aude Cincotta, Dongyu Hu, Anusuya Chinsamy, François Escuillié & Pascal Godefroit (2017). A new Jurassic theropod from China documents a transitional step in the macrostructure of feathers. The Science of Nature, 104: 74 (advance online publication). doi:10.1007/s00114-017-1496-y
  16. ^ Tsuihiji, T.; Barsbold, R.; Watabe, M.; Tsogtbaatar, K.; Chinzorig, T.; Fujiyama, Y.; Suzuki, S. (2014). "An exquisitely preserved troodontid theropod with new information on the palatal structure from the Upper Cretaceous of Mongolia". Naturwissenschaften. 101: 131–142. doi:10.1007/s00114-014-1143-9. PMID 24441791. 
  17. ^ Gao, C.; Morschhauser, E. M.; Varricchio, D. J.; Liu, J.; Zhao, B. (2012). Farke, Andrew A, ed. "A Second Soundly Sleeping Dragon: New Anatomical Details of the Chinese Troodontid Mei long with Implications for Phylogeny and Taphonomy". PLoS ONE. 7 (9): e45203. doi:10.1371/journal.pone.0045203. PMC 3459897Freely accessible. PMID 23028847. 
  18. ^ Cai-zhi Shen; Bo Zhao; Chun-ling Gao; Jun-chang Lü; Martin Kundrát (2017). "A New Troodontid Dinosaur (Liaoningvenator curriei gen. et sp. nov.) from the Early Cretaceous Yixian Formation in Western Liaoning Province". Acta Geoscientica Sinica. 38 (3): 359–371. doi:10.3975/cagsb.2017.03.06. 
  19. ^ Brusatte, S. L.; Lloyd, G. T.; Wang, S. C.; Norell, M. A. (2014). "Gradual Assembly of Avian Body Plan Culminated in Rapid Rates of Evolution across the Dinosaur-Bird Transition". Current Biology. 24 (20): 2386. doi:10.1016/j.cub.2014.08.034. PMID 25264248. 
  20. ^ Caizhi Shen; Junchang Lü; Sizhao Liu; Martin Kundrát; Stephen L. Brusatte; Hailong Gao (2017). "A new troodontid dinosaur from the Lower Cretaceous Yixian Formation of Liaoning Province, China". Acta Geologica Sinica (English Edition). 91 (3): 763–780. 

Disclaimer

None of the audio/visual content is hosted on this site. All media is embedded from other sites such as GoogleVideo, Wikipedia, YouTube etc. Therefore, this site has no control over the copyright issues of the streaming media.

All issues concerning copyright violations should be aimed at the sites hosting the material. This site does not host any of the streaming media and the owner has not uploaded any of the material to the video hosting servers. Anyone can find the same content on Google Video or YouTube by themselves.

The owner of this site cannot know which documentaries are in public domain, which has been uploaded to e.g. YouTube by the owner and which has been uploaded without permission. The copyright owner must contact the source if he wants his material off the Internet completely.

Powered by YouTube
Wikipedia content is licensed under the GFDL and (CC) license