Share
VIDEOS 1 TO 50
Introduction to VLSI System Design
Introduction to VLSI System Design
Published: 2014/06/02
Channel: Twenty19
Introduction to VLSI
Introduction to VLSI
Published: 2015/06/16
Channel: Vidya-mitra
VLSI Fabrication Process
VLSI Fabrication Process
Published: 2016/11/04
Channel: John Bedford Solomon
YouTube - vlsi chip manufacturing .flv
YouTube - vlsi chip manufacturing .flv
Published: 2011/01/06
Channel: soan kk
What is VLSI?(Explained!!!)
What is VLSI?(Explained!!!)
Published: 2017/03/19
Channel: nextstepacademy
VLSI-VERY LARGE SCALE INTEGRATION- INTRODUCTION
VLSI-VERY LARGE SCALE INTEGRATION- INTRODUCTION
Published: 2017/03/08
Channel: Electronics And Computer World
Lecture - 1 Introduction on VLSI Design
Lecture - 1 Introduction on VLSI Design
Published: 2009/01/12
Channel: nptelhrd
Very-large-scale integration
Very-large-scale integration
Published: 2016/01/22
Channel: WikiAudio
Very Large Scale Integration (VLSI)
Very Large Scale Integration (VLSI)
Published: 2017/07/08
Channel: Let's Study
Cranky - V.L.S.I.
Cranky - V.L.S.I.
Published: 2012/03/04
Channel: FutileExistence
vlsi design IN HINDI
vlsi design IN HINDI
Published: 2016/12/16
Channel: Technology Networking
Magic VLSI Layout Tutorial - part 1
Magic VLSI Layout Tutorial - part 1
Published: 2012/10/06
Channel: CellRider
How to get a job in a VLSI company
How to get a job in a VLSI company
Published: 2014/04/18
Channel: Sivakumar Polur Ragupathy
About Embedded System,VLSI and etc
About Embedded System,VLSI and etc
Published: 2016/03/18
Channel: Epr Labs
Tutorial on CMOS VLSI Design of Basic Logic Gates
Tutorial on CMOS VLSI Design of Basic Logic Gates
Published: 2017/01/26
Channel: Day On My Plate
Tutorial 1 VLSI Electric NAND/NOR Layout Design
Tutorial 1 VLSI Electric NAND/NOR Layout Design
Published: 2014/01/21
Channel: Abd Almonam Zahed
Introduction to VLSI Design | VLSI Digital Design Essentials | VLSI Tutorial | Edureka
Introduction to VLSI Design | VLSI Digital Design Essentials | VLSI Tutorial | Edureka
Published: 2015/11/03
Channel: edureka!
VLSI Photolithography
VLSI Photolithography
Published: 2016/05/01
Channel: Namrata Borgohain
Very large scale integration (VLSI)  (Version 1.0)
Very large scale integration (VLSI) (Version 1.0)
Published: 2016/10/27
Channel: Electrical And Electronics Engineering
Top 5 Best VLSI Companies in India 2017
Top 5 Best VLSI Companies in India 2017
Published: 2016/12/26
Channel: Top list Provider
CMOS FABRICATION STEPS IN VLSI DESIGN
CMOS FABRICATION STEPS IN VLSI DESIGN
Published: 2017/01/31
Channel: Vanjipriya Priya
Very Large Scale Integration - 7 Segment Display Schematic & Layout Report
Very Large Scale Integration - 7 Segment Display Schematic & Layout Report
Published: 2016/05/24
Channel: Bay Yolal
VLSI Design - Training at CRISP
VLSI Design - Training at CRISP
Published: 2015/06/24
Channel: CRISP Bhopal
nMOS Fabrication | nMOS FABRICATION IN VLSI DESIGN
nMOS Fabrication | nMOS FABRICATION IN VLSI DESIGN
Published: 2017/01/10
Channel: KKLECTURES
Recent Trends in VLSI design Nano Scale Device Modeling & Simulation
Recent Trends in VLSI design Nano Scale Device Modeling & Simulation
Published: 2014/01/31
Channel: NCTEL
Tutorial On CMOS VLSI Design of a Full Adder
Tutorial On CMOS VLSI Design of a Full Adder
Published: 2017/02/02
Channel: Day On My Plate
VLSI ASIC Design Flow
VLSI ASIC Design Flow
Published: 2014/12/16
Channel: Team VLSI
Lecture-1-Introduction to VLSI Design
Lecture-1-Introduction to VLSI Design
Published: 2007/12/12
Channel: nptelhrd
Mod-01 Lec-01 Introduction to Digital VLSI Design Flow
Mod-01 Lec-01 Introduction to Digital VLSI Design Flow
Published: 2013/02/15
Channel: nptelhrd
fabrication process of VLSI chip
fabrication process of VLSI chip
Published: 2016/02/10
Channel: Ajaykumar Dharmireddy
VLSI Design Flow, BTech by Miss Komal Mehna, Biyani Groups of Colleges
VLSI Design Flow, BTech by Miss Komal Mehna, Biyani Groups of Colleges
Published: 2014/08/22
Channel: Guru Kpo
VLSI Design methodology
VLSI Design methodology
Published: 2015/08/31
Channel: RGMCET Nandyal
VLSI Fundamentals
VLSI Fundamentals
Published: 2013/01/28
Channel: Ensemble Tech Pvt Ltd
VLSI
VLSI
Published: 2017/05/10
Channel: Let's Learn
Mod-01 Lec-36 VLSI Testing: Automatic Test Pattern Generation
Mod-01 Lec-36 VLSI Testing: Automatic Test Pattern Generation
Published: 2016/03/01
Channel: nptelhrd
Mod-01 Lec-37 VLSI Testing: design for Test (DFT)
Mod-01 Lec-37 VLSI Testing: design for Test (DFT)
Published: 2016/03/01
Channel: nptelhrd
Mod-01 Lec-38 VLSI Testing: Built-in Self-Test (BIST)
Mod-01 Lec-38 VLSI Testing: Built-in Self-Test (BIST)
Published: 2016/03/01
Channel: nptelhrd
Mod-01 Lec-01 Lecture 1 : Introduction to CMOS Analog VLSI Design
Mod-01 Lec-01 Lecture 1 : Introduction to CMOS Analog VLSI Design
Published: 2015/12/21
Channel: nptelhrd
Electric VLSI Video Tutorial 1 by Professor Jake Baker
Electric VLSI Video Tutorial 1 by Professor Jake Baker
Published: 2013/04/26
Channel: efabless
VLSI   Euler
VLSI Euler's Path and Stick Diagrams
Published: 2016/05/21
Channel: Rakesh Jain
VHDL Introduction ☆ Advanced VLSI Design
VHDL Introduction ☆ Advanced VLSI Design
Published: 2016/06/21
Channel: Lernvideos und Vorträge
VLSI } 004 } Clock Domain Crossing (CDC) Techniques }
VLSI } 004 } Clock Domain Crossing (CDC) Techniques }
Published: 2015/11/30
Channel: Leprofesseur }
Lec 04 - Basics of CMOS devices (First Course on VLSI design and CAD)
Lec 04 - Basics of CMOS devices (First Course on VLSI design and CAD)
Published: 2012/03/18
Channel: Satish Kashyap
THE VLSI INDUSTRY - A High Level Overview.
THE VLSI INDUSTRY - A High Level Overview.
Published: 2015/10/04
Channel: Logosent Semiconductors
VLSI Tutorial: Part 3 (Synthesis)
VLSI Tutorial: Part 3 (Synthesis)
Published: 2015/12/12
Channel: Daniel Khoury
VLSI Fabrication of n-well
VLSI Fabrication of n-well
Published: 2016/06/03
Channel: UY Studios
simulation in vlsi RC1300Bprasad
simulation in vlsi RC1300Bprasad
Published: 2015/01/12
Channel: B. Prasad
VLSI job opportunities for fresher
VLSI job opportunities for fresher
Published: 2014/04/09
Channel: Sivakumar Polur Ragupathy
Demo of VLSI, Electronic Design Automation, CMOS Digital Integration Circuits
Demo of VLSI, Electronic Design Automation, CMOS Digital Integration Circuits
Published: 2015/08/09
Channel: way2school
VLSI Physical Design Flow Overview
VLSI Physical Design Flow Overview
Published: 2015/06/30
Channel: Physical Design World
NEXT
GO TO RESULTS [51 .. 100]

WIKIPEDIA ARTICLE

From Wikipedia, the free encyclopedia
Jump to: navigation, search

Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining thousands of transistors into a single chip. VLSI began in the 1970s when complex semiconductor and communication technologies were being developed. The microprocessor is a VLSI device. Before the introduction of VLSI technology most ICs had a limited set of functions they could perform. An electronic circuit might consist of a CPU, ROM, RAM and other glue logic. VLSI lets IC designers add all of these into one chip.

A VLSI integrated-circuit die

History[edit]

The History of the transistor dates to the mid-1920s when several inventors attempted devices that were intended to control current in solid-state diodes and convert them into triodes. Success came after World War II, when the use of silicon and germanium crystals as radar detectors led to improvements in fabrication and theory. Scientists who had worked on radar returned to solid-state device development. With the invention of transistors at Bell Labs in 1947, the field of electronics shifted from vacuum tubes to solid-state devices.

With the small transistor at their hands, electrical engineers of the 1950s saw the possibilities of constructing far more advanced circuits. However, as the complexity of circuits grew, problems arose.[1]

One problem was the size of the circuit. A complex circuit like a computer was dependent on speed. If the components were large, the wires interconnecting them must be long. The electric signals took time to go through the circuit, thus slowing the computer.[1]

The Invention of the integrated circuit by Jack Kilby and Robert Noyce solved this problem by making all the components and the chip out of the same block (monolith) of semiconductor material. The circuits could be made smaller, and the manufacturing process could be automated. This led to the idea of integrating all components on a single silicon wafer, which led to small-scale integration (SSI) in the early 1960s, medium-scale integration (MSI) in the late 1960s, and then large-scale integration (LSI) as well as VLSI in the 1970s and 1980s, with tens of thousands of transistors on a single chip (later hundreds of thousands, then millions, and now billions (109)).

Developments[edit]

The first semiconductor chips held two transistors each. Subsequent advances added more transistors, and as a consequence, more individual functions or systems were integrated over time. The first integrated circuits held only a few devices, perhaps as many as ten diodes, transistors, resistors and capacitors, making it possible to fabricate one or more logic gates on a single device. Now known retrospectively as small-scale integration (SSI), improvements in technique led to devices with hundreds of logic gates, known as medium-scale integration (MSI). Further improvements led to large-scale integration (LSI), i.e. systems with at least a thousand logic gates. Current technology has moved far past this mark and today's microprocessors have many millions of gates and billions of individual transistors.

At one time, there was an effort to name and calibrate various levels of large-scale integration above VLSI. Terms like ultra-large-scale integration (ULSI) were used. But the huge number of gates and transistors available on common devices has rendered such fine distinctions moot. Terms suggesting greater than VLSI levels of integration are no longer in widespread use.

In 2008, billion-transistor processors became commercially available. This became more commonplace as semiconductor fabrication advanced from the then-current generation of 65 nm processes. Current designs, unlike the earliest devices, use extensive design automation and automated logic synthesis to lay out the transistors, enabling higher levels of complexity in the resulting logic functionality. Certain high-performance logic blocks like the SRAM (static random-access memory) cell, are still designed by hand to ensure the highest efficiency.

Structured design[edit]

Structured VLSI design is a modular methodology originated by Carver Mead and Lynn Conway for saving microchip area by minimizing the interconnect fabrics area. This is obtained by repetitive arrangement of rectangular macro blocks which can be interconnected using wiring by abutment. An example is partitioning the layout of an adder into a row of equal bit slices cells. In complex designs this structuring may be achieved by hierarchical nesting.[2]

Structured VLSI design had been popular in the early 1980s, but lost its popularity later because of the advent of placement and routing tools wasting a lot of area by routing, which is tolerated because of the progress of Moore's Law. When introducing the hardware description language KARL in the mid' 1970s, Reiner Hartenstein coined the term "structured VLSI design" (originally as "structured LSI design"), echoing Edsger Dijkstra's structured programming approach by procedure nesting to avoid chaotic spaghetti-structured program

Struggles[edit]

As microprocessors become more complex due to technology scaling, microprocessor designers have encountered several challenges which force them to think beyond the design plane, and look ahead to post-silicon:

  • Process variation – As photolithography techniques get closer to the fundamental laws of optics, achieving high accuracy in doping concentrations and etched wires is becoming more difficult and prone to errors due to variation. Designers now must simulate across multiple fabrication process corners before a chip is certified ready for production, or use system-level techniques for dealing with effects of variation.[3]
  • Stricter design rules – Due to lithography and etch issues with scaling, design rules for layout have become increasingly stringent. Designers must keep ever more of these rules in mind while laying out custom circuits. The overhead for custom design is now reaching a tipping point, with many design houses opting to switch to electronic design automation (EDA) tools to automate their design process.
  • Timing/design closure – As clock frequencies tend to scale up, designers are finding it more difficult to distribute and maintain low clock skew between these high frequency clocks across the entire chip. This has led to a rising interest in multicore and multiprocessor architectures, since an overall speedup can be obtained even with lower clock frequency by using the computational power of all the cores.
  • First-pass success – As die sizes shrink (due to scaling), and wafer sizes go up (due to lower manufacturing costs), the number of dies per wafer increases, and the complexity of making suitable photomasks goes up rapidly. A mask set for a modern technology can cost several million dollars. This non-recurring expense deters the old iterative philosophy involving several "spin-cycles" to find errors in silicon, and encourages first-pass silicon success. Several design philosophies have been developed to aid this new design flow, including design for manufacturing (DFM), design for test (DFT), and Design for X.

See also[edit]

References[edit]

  1. ^ a b "The History of the Integrated Circuit". Nobelprize.org. Retrieved 21 Apr 2012. 
  2. ^ "Digital Electronics - A Modern Approach by B K Jain". Retrieved 2 May 2017. 
  3. ^ "A Survey Of Architectural Techniques for Managing Process Variation", ACM Computing Surveys, 2015

Further reading[edit]

External links[edit]

Disclaimer

None of the audio/visual content is hosted on this site. All media is embedded from other sites such as GoogleVideo, Wikipedia, YouTube etc. Therefore, this site has no control over the copyright issues of the streaming media.

All issues concerning copyright violations should be aimed at the sites hosting the material. This site does not host any of the streaming media and the owner has not uploaded any of the material to the video hosting servers. Anyone can find the same content on Google Video or YouTube by themselves.

The owner of this site cannot know which documentaries are in public domain, which has been uploaded to e.g. YouTube by the owner and which has been uploaded without permission. The copyright owner must contact the source if he wants his material off the Internet completely.

Powered by YouTube
Wikipedia content is licensed under the GFDL and (CC) license